首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper considers the statistical analysis of masked data in a series system with Burr-XII distributed components. Based on progressively Type-I interval censored sample, the maximum likelihood estimators for the parameters are obtained by using the expectation maximization algorithm, and the associated approximate confidence intervals are also derived. In addition, Gibbs sampling procedure using important sampling is applied for obtaining the Bayesian estimates of the parameters, and Monte Carlo method is employed to construct the credible intervals. Finally, a simulation study is proposed to illustrate the efficiency of the methods under different removal schemes and masking probabilities.  相似文献   

2.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

3.
In this paper, we consider some problems of estimation and reconstruction based on middle censored competing risks data. It is assumed that the lifetime distributions of the latent failure times are independent and exponential distributed with different parameters and also that the censoring mechanism is independent. The maximum likelihood estimators (MLEs) of the unknown parameters are obtained. We then use the asymptotic distribution of the MLEs to construct approximate confidence intervals. Based on gamma priors, Lindley's approximation method is applied to obtain the Bayesian estimates of the unknown parameters under squared error loss function. Since it is not possible to construct the credible intervals, we propose and implement the Gibbs sampling technique to construct the credible intervals. Several point reconstructors for failure time of censored units are provided. Finally, a simulation study is given by Monte-Carlo simulations to evaluate the performances of the different methods and a data set is analysed to illustrate the proposed procedures.  相似文献   

4.
In this paper, we consider the simple step-stress model for a two-parameter exponential distribution, when both the parameters are unknown and the data are Type-II censored. It is assumed that under two different stress levels, the scale parameter only changes but the location parameter remains unchanged. It is observed that the maximum likelihood estimators do not always exist. We obtain the maximum likelihood estimates of the unknown parameters whenever they exist. We provide the exact conditional distributions of the maximum likelihood estimators of the scale parameters. Since the construction of the exact confidence intervals is very difficult from the conditional distributions, we propose to use the observed Fisher Information matrix for this purpose. We have suggested to use the bootstrap method for constructing confidence intervals. Bayes estimates and associated credible intervals are obtained using the importance sampling technique. Extensive simulations are performed to compare the performances of the different confidence and credible intervals in terms of their coverage percentages and average lengths. The performances of the bootstrap confidence intervals are quite satisfactory even for small sample sizes.  相似文献   

5.
A generalized version of inverted exponential distribution (IED) is considered in this paper. This lifetime distribution is capable of modeling various shapes of failure rates, and hence various shapes of aging criteria. The model can be considered as another useful two-parameter generalization of the IED. Maximum likelihood and Bayes estimates for two parameters of the generalized inverted exponential distribution (GIED) are obtained on the basis of a progressively type-II censored sample. We also showed the existence, uniqueness and finiteness of the maximum likelihood estimates of the parameters of GIED based on progressively type-II censored data. Bayesian estimates are obtained using squared error loss function. These Bayesian estimates are evaluated by applying the Lindley's approximation method and via importance sampling technique. The importance sampling technique is used to compute the Bayes estimates and the associated credible intervals. We further consider the Bayes prediction problem based on the observed samples, and provide the appropriate predictive intervals. Monte Carlo simulations are performed to compare the performances of the proposed methods and a data set has been analyzed for illustrative purposes.  相似文献   

6.
In this article, we present the performance of the maximum likelihood estimates of the Burr XII parameters for constant-stress partially accelerated life tests under multiple censored data. Two maximum likelihood estimation methods are considered. One method is based on observed-data likelihood function and the maximum likelihood estimates are obtained by using the quasi-Newton algorithm. The other method is based on complete-data likelihood function and the maximum likelihood estimates are derived by using the expectation-maximization (EM) algorithm. The variance–covariance matrices are derived to construct the confidence intervals of the parameters. The performance of these two algorithms is compared with each other by a simulation study. The simulation results show that the maximum likelihood estimation via the EM algorithm outperforms the quasi-Newton algorithm in terms of the absolute relative bias, the bias, the root mean square error and the coverage rate. Finally, a numerical example is given to illustrate the performance of the proposed methods.  相似文献   

7.
The authors show how an adjusted pseudo‐empirical likelihood ratio statistic that is asymptotically distributed as a chi‐square random variable can be used to construct confidence intervals for a finite population mean or a finite population distribution function from complex survey samples. They consider both non‐stratified and stratified sampling designs, with or without auxiliary information. They examine the behaviour of estimates of the mean and the distribution function at specific points using simulations calling on the Rao‐Sampford method of unequal probability sampling without replacement. They conclude that the pseudo‐empirical likelihood ratio confidence intervals are superior to those based on the normal approximation, whether in terms of coverage probability, tail error rates or average length of the intervals.  相似文献   

8.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

9.
Summary.  We construct approximate confidence intervals for a nonparametric regression function, using polynomial splines with free-knot locations. The number of knots is determined by generalized cross-validation. The estimates of knot locations and coefficients are obtained through a non-linear least squares solution that corresponds to the maximum likelihood estimate. Confidence intervals are then constructed based on the asymptotic distribution of the maximum likelihood estimator. Average coverage probabilities and the accuracy of the estimate are examined via simulation. This includes comparisons between our method and some existing methods such as smoothing spline and variable knots selection as well as a Bayesian version of the variable knots method. Simulation results indicate that our method works well for smooth underlying functions and also reasonably well for discontinuous functions. It also performs well for fairly small sample sizes.  相似文献   

10.
The generalized half-normal (GHN) distribution and progressive type-II censoring are considered in this article for studying some statistical inferences of constant-stress accelerated life testing. The EM algorithm is considered to calculate the maximum likelihood estimates. Fisher information matrix is formed depending on the missing information law and it is utilized for structuring the asymptomatic confidence intervals. Further, interval estimation is discussed through bootstrap intervals. The Tierney and Kadane method, importance sampling procedure and Metropolis-Hastings algorithm are utilized to compute Bayesian estimates. Furthermore, predictive estimates for censored data and the related prediction intervals are obtained. We consider three optimality criteria to find out the optimal stress level. A real data set is used to illustrate the importance of GHN distribution as an alternative lifetime model for well-known distributions. Finally, a simulation study is provided with discussion.  相似文献   

11.
ABSTRACT

We consider point and interval estimation of the unknown parameters of a generalized inverted exponential distribution in the presence of hybrid censoring. The maximum likelihood estimates are obtained using EM algorithm. We then compute Fisher information matrix using the missing value principle. Bayes estimates are derived under squared error and general entropy loss functions. Furthermore, approximate Bayes estimates are obtained using Tierney and Kadane method as well as using importance sampling approach. Asymptotic and highest posterior density intervals are also constructed. Proposed estimates are compared numerically using Monte Carlo simulations and a real data set is analyzed for illustrative purposes.  相似文献   

12.
The Hartley‐Rao‐Cochran sampling design is an unequal probability sampling design which can be used to select samples from finite populations. We propose to adjust the empirical likelihood approach for the Hartley‐Rao‐Cochran sampling design. The approach proposed intrinsically incorporates sampling weights, auxiliary information and allows for large sampling fractions. It can be used to construct confidence intervals. In a simulation study, we show that the coverage may be better for the empirical likelihood confidence interval than for standard confidence intervals based on variance estimates. The approach proposed is simple to implement and less computer intensive than bootstrap. The confidence interval proposed does not rely on re‐sampling, linearization, variance estimation, design‐effects or joint inclusion probabilities.  相似文献   

13.
The hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. Based on hybrid censored samples, we first derive the maximum likelihood estimators of the unknown parameters and the expected Fisher’s information matrix of the generalized inverted exponential distribution (GIED). Monte Carlo simulations are performed to study the performance of the maximum likelihood estimators. Next we consider Bayes estimation under the squared error loss function. These Bayes estimates are evaluated by applying Lindley’s approximation method, the importance sampling procedure and Metropolis–Hastings algorithm. The importance sampling technique is used to compute the highest posterior density credible intervals. Two data sets are analyzed for illustrative purposes. Finally, we discuss a method of obtaining the optimum hybrid censoring scheme.  相似文献   

14.
Recently, Rayleigh distribution has received considerable attention in the statistical literature. In this article, we consider the point and interval estimation of the functions of the unknown parameters of a two-parameter Rayleigh distribution. First, we obtain the maximum likelihood estimators (MLEs) of the unknown parameters. The MLEs cannot be obtained in explicit forms, and we propose to use the maximization of the profile log-likelihood function to compute the MLEs. We further consider the Bayesian inference of the unknown parameters. The Bayes’ estimates and the associated credible intervals cannot be obtained in closed forms. We use the importance sampling technique to approximate (compute) the Bayes’ estimates and the associated credible intervals. For comparison purposes, we have also used the exact method to compute the Bayes’ estimates and the corresponding credible intervals. Monte Carlo simulations are performed to compare the performances of the proposed method, and one dataset has been analyzed for illustrative purposes. We further consider the Bayes’ prediction problem based on the observed samples, and provide the appropriate predictive intervals. A data example has been provided for illustrative purposes.  相似文献   

15.
In this paper, the estimation of parameters, reliability and hazard functions of a inverted exponentiated half logistic distribution (IEHLD) from progressive Type II censored data has been considered. The Bayes estimates for progressive Type II censored IEHLD under asymmetric and symmetric loss functions such as squared error, general entropy and linex loss function are provided. The Bayes estimates for progressive Type II censored IEHLD parameters, reliability and hazard functions are also obtained under the balanced loss functions. However, the Bayes estimates cannot be obtained explicitly, Lindley approximation method and importance sampling procedure are considered to obtain the Bayes estimates. Furthermore, the asymptotic normality of the maximum likelihood estimates is used to obtain the approximate confidence intervals. The highest posterior density credible intervals of the parameters based on importance sampling procedure are computed. Simulations are performed to see the performance of the proposed estimates. For illustrative purposes, two data sets have been analyzed.  相似文献   

16.
In this paper, we consider the problem of making statistical inference for a truncated normal distribution under progressive type I interval censoring. We obtain maximum likelihood estimators of unknown parameters using the expectation-maximization algorithm and in sequel, we also compute corresponding midpoint estimates of parameters. Estimation based on the probability plot method is also considered. Asymptotic confidence intervals of unknown parameters are constructed based on the observed Fisher information matrix. We obtain Bayes estimators of parameters with respect to informative and non-informative prior distributions under squared error and linex loss functions. We compute these estimates using the importance sampling procedure. The highest posterior density intervals of unknown parameters are constructed as well. We present a Monte Carlo simulation study to compare the performance of proposed point and interval estimators. Analysis of a real data set is also performed for illustration purposes. Finally, inspection times and optimal censoring plans based on the expected Fisher information matrix are discussed.  相似文献   

17.
Based on hybrid censored data, the problem of making statistical inference on parameters of a two parameter Burr Type XII distribution is taken up. The maximum likelihood estimates are developed for the unknown parameters using the EM algorithm. Fisher information matrix is obtained by applying missing value principle and is further utilized for constructing the approximate confidence intervals. Some Bayes estimates and the corresponding highest posterior density intervals of the unknown parameters are also obtained. Lindley’s approximation method and a Markov Chain Monte Carlo (MCMC) technique have been applied to evaluate these Bayes estimates. Further, MCMC samples are utilized to construct the highest posterior density intervals as well. A numerical comparison is made between proposed estimates in terms of their mean square error values and comments are given. Finally, two data sets are analyzed using proposed methods.  相似文献   

18.
The maximum likelihood and Bayesian approaches have been considered for the two-parameter generalized exponential distribution based on record values with the number of trials following the record values (inter-record times). The maximum likelihood estimates are obtained under the inverse sampling and the random sampling schemes. It is shown that the maximum likelihood estimator of the shape parameter converges in mean square to the true value when the scale parameter is known. The Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The confidence intervals for the parameters are constructed based on asymptotic and Bayesian methods. The Bayes and the maximum likelihood estimators are compared in terms of the estimated risk by the Monte Carlo simulations. The comparison of the estimators based on the record values and the record values with their corresponding inter-record times are performed by using Monte Carlo simulations.  相似文献   

19.
The maximum likelihood and Bayesian approaches for parameter estimations and prediction of future record values have been considered for the two-parameter Burr Type XII distribution based on record values with the number of trials following the record values (inter-record times). Firstly, the Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, the Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. Secondly, the Bayes estimates are obtained with respect to a discrete prior for the first shape parameter and a conjugate prior for other shape parameter. The Bayes and the maximum likelihood estimates are compared in terms of the estimated risk by the Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record arising from the Burr Type XII distribution based on record data. The comparison of the derived predictors is carried out by using Monte Carlo simulations. A real data are analysed for illustration purposes.  相似文献   

20.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号