首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In longitudinal clinical trials, a common objective is to compare the rates of changes in an outcome variable between two treatment groups. Generalized estimating equation (GEE) has been widely used to examine if the rates of changes are significantly different between treatment groups due to its robustness to misspecification of the true correlation structure and randomly missing data. The sample size formula for repeated outcomes is based on the assumption of missing completely at random and a large sample approximation. A simulation study is conducted to investigate the performance of GEE sample size formula with small sample sizes, damped exponential family of correlation structure and non‐ignorable missing data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In clinical trials with repeated measurements, the responses from each subject are measured multiple times during the study period. Two approaches have been widely used to assess the treatment effect, one that compares the rate of change between two groups and the other that tests the time-averaged difference (TAD). While sample size calculations based on comparing the rate of change between two groups have been reported by many investigators, the literature has paid relatively little attention to the sample size estimation for time-averaged difference (TAD) in the presence of heterogeneous correlation structure and missing data in repeated measurement studies. In this study, we investigate sample size calculation for the comparison of time-averaged responses between treatment groups in clinical trials with longitudinally observed binary outcomes. The generalized estimating equation (GEE) approach is used to derive a closed-form sample size formula, which is flexible enough to account for arbitrary missing patterns and correlation structures. In particular, we demonstrate that the proposed sample size can accommodate a mixture of missing patterns, which is frequently encountered by practitioners in clinical trials. To our knowledge, this is the first study that considers the mixture of missing patterns in sample size calculation. Our simulation shows that the nominal power and type I error are well preserved over a wide range of design parameters. Sample size calculation is illustrated through an example.  相似文献   

3.
The 2 × 2 crossover trial uses subjects as their own control to reduce the intersubject variability in the treatment comparison, and typically requires fewer subjects than a parallel design. The generalized estimating equations (GEE) methodology has been commonly used to analyze incomplete discrete outcomes from crossover trials. We propose a unified approach to the power and sample size determination for the Wald Z-test and t-test from GEE analysis of paired binary, ordinal and count outcomes in crossover trials. The proposed method allows misspecification of the variance and correlation of the outcomes, missing outcomes, and adjustment for the period effect. We demonstrate that misspecification of the working variance and correlation functions leads to no or minimal efficiency loss in GEE analysis of paired outcomes. In general, GEE requires the assumption of missing completely at random. For bivariate binary outcomes, we show by simulation that the GEE estimate is asymptotically unbiased or only minimally biased, and the proposed sample size method is suitable under missing at random (MAR) if the working correlation is correctly specified. The performance of the proposed method is illustrated with several numerical examples. Adaption of the method to other paired outcomes is discussed.  相似文献   

4.
We analyse longitudinal data on CD4 cell counts from patients who participated in clinical trials that compared two therapeutic treatments: zidovudine and didanosine. The investigators were interested in modelling the CD4 cell count as a function of treatment, age at base-line and disease stage at base-line. Serious concerns can be raised about the normality assumption of CD4 cell counts that is implicit in many methods and therefore an analysis may have to start with a transformation. Instead of assuming that we know the transformation (e.g. logarithmic) that makes the outcome normal and linearly related to the covariates, we estimate the transformation, by using maximum likelihood, within the Box–Cox family. There has been considerable work on the Box–Cox transformation for univariate regression models. Here, we discuss the Box–Cox transformation for longitudinal regression models when the outcome can be missing over time, and we also implement a maximization method for the likelihood, assumming that the missing data are missing at random.  相似文献   

5.
Abstract

In many cluster randomization studies, cluster sizes are not fixed and may be highly variable. For those studies, sample size estimation assuming a constant cluster size may lead to under-powered studies. Sample size formulas have been developed to incorporate the variability in cluster size for clinical trials with continuous and binary outcomes. Count outcomes frequently occur in cluster randomized studies. In this paper, we derive a closed-form sample size formula for count outcomes accounting for the variability in cluster size. We compare the performance of the proposed method with the average cluster size method through simulation. The simulation study shows that the proposed method has a better performance with empirical powers and type I errors closer to the nominal levels.  相似文献   

6.
Molecularly targeted, genomic‐driven, and immunotherapy‐based clinical trials continue to be advanced for the treatment of relapse or refractory cancer patients, where the growth modulation index (GMI) is often considered a primary endpoint of treatment efficacy. However, there little literature is available that considers the trial design with GMI as the primary endpoint. In this article, we derived a sample size formula for the score test under a log‐linear model of the GMI. Study designs using the derived sample size formula are illustrated under a bivariate exponential model, the Weibull frailty model, and the generalized treatment effect size. The proposed designs provide sound statistical methods for a single‐arm phase II trial with GMI as the primary endpoint.  相似文献   

7.
The phase II clinical trials often use the binary outcome. Thus, accessing the success rate of the treatment is a primary objective for the phase II clinical trials. Reporting confidence intervals is a common practice for clinical trials. Due to the group sequence design and relatively small sample size, many existing confidence intervals for phase II trials are much conservative. In this paper, we propose a class of confidence intervals for binary outcomes. We also provide a general theory to assess the coverage of confidence intervals for discrete distributions, and hence make recommendations for choosing the parameter in calculating the confidence interval. The proposed method is applied to Simon's [14] optimal two-stage design with numerical studies. The proposed method can be viewed as an alternative approach for the confidence interval for discrete distributions in general.  相似文献   

8.
Summary. The study of human immunodeficiency virus dynamics is one of the most important areas in research into acquired immune deficiency syndrome in recent years. Non-linear mixed effects models have been proposed for modelling viral dynamic processes. A challenging problem in the modelling is to identify repeatedly measured (time-dependent), but possibly missing, immunologic or virologic markers (covariates) for viral dynamic parameters. For missing time-dependent covariates in non-linear mixed effects models, the commonly used complete-case, mean imputation and last value carried forward methods may give misleading results. We propose a three-step hierarchical multiple-imputation method, implemented by Gibbs sampling, which imputes the missing data at the individual level but can pool information across individuals. We compare various methods by Monte Carlo simulations and find that the multiple-imputation method proposed performs the best in terms of bias and mean-squared errors in the estimates of covariate coefficients. By applying the favoured multiple-imputation method to clinical data, we conclude that there is a negative correlation between the viral decay rate (a virological response parameter) and CD4 or CD8 cell counts during the treatment; this is counter-intuitive, but biologically interpretable on the basis of findings from other clinical studies. These results may have an important influence on decisions about treatment for acquired immune deficiency syndrome patients.  相似文献   

9.
To increase the efficiency of comparisons between treatments in clinical trials, we may consider the use of a multiple matching design, in which, for each patient receiving the experimental treatment, we match with more than one patient receiving the standard treatment. To assess the efficacy of the experimental treatment, the risk ratio (RR) of patient responses between two treatments is certainly one of the most commonly used measures. Because the probability of patient responses in clinical trial is often not small, the odds ratio (OR), of which the practical interpretation is not easily understood, cannot approximate RR well. Thus, all sample size formulae in terms of OR for case-control studies with multiple matched controls per case can be of limited use here. In this paper, we develop three sample size formulae based on RR for randomized trials with multiple matching. We propose a test statistic for testing the equality of RR under multiple matching. On the basis of Monte Carlo simulation, we evaluate the performance of the proposed test statistic with respect to Type I error. To evaluate the accuracy and usefulness of the three sample size formulae developed in this paper, we further calculate their simulated powers and compare them with those of the sample size formula ignoring matching and the sample size formula based on OR for multiple matching published elsewhere. Finally, we include an example that employs the multiple matching study design about the use of the supplemental ascorbate in the supportive treatment of terminal cancer patients to illustrate the use of these formulae.  相似文献   

10.
Prior information is often incorporated informally when planning a clinical trial. Here, we present an approach on how to incorporate prior information, such as data from historical clinical trials, into the nuisance parameter–based sample size re‐estimation in a design with an internal pilot study. We focus on trials with continuous endpoints in which the outcome variance is the nuisance parameter. For planning and analyzing the trial, frequentist methods are considered. Moreover, the external information on the variance is summarized by the Bayesian meta‐analytic‐predictive approach. To incorporate external information into the sample size re‐estimation, we propose to update the meta‐analytic‐predictive prior based on the results of the internal pilot study and to re‐estimate the sample size using an estimator from the posterior. By means of a simulation study, we compare the operating characteristics such as power and sample size distribution of the proposed procedure with the traditional sample size re‐estimation approach that uses the pooled variance estimator. The simulation study shows that, if no prior‐data conflict is present, incorporating external information into the sample size re‐estimation improves the operating characteristics compared to the traditional approach. In the case of a prior‐data conflict, that is, when the variance of the ongoing clinical trial is unequal to the prior location, the performance of the traditional sample size re‐estimation procedure is in general superior, even when the prior information is robustified. When considering to include prior information in sample size re‐estimation, the potential gains should be balanced against the risks.  相似文献   

11.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

12.
Dynamic treatment strategies are designed to change treatments over time in response to intermediate outcomes. They can be deployed for primary treatment as well as for the introduction of adjuvant treatment or other treatment‐enhancing interventions. When treatment interventions are delayed until needed, more cost‐efficient strategies will result. Sequential multiple assignment randomized (SMAR) trials allow for unbiased estimation of the marginal effects of different sequences of history‐dependent treatment decisions. Because a single SMAR trial enables evaluation of many different dynamic regimes at once, it is naturally thought to require larger sample sizes than the parallel randomized trial. In this paper, we compare power between SMAR trials studying a regime, where treatment boosting enters when triggered by an observed event, versus the parallel design, where a treatment boost is consistently prescribed over the entire study period. In some settings, we found that the dynamic design yields the more efficient trial for the detection of treatment activity. We develop one particular trial to compare a dynamic nursing intervention with telemonitoring for the enhancement of medication adherence in epilepsy patients. To this end, we derive from the SMAR trial data either an average of conditional treatment effects (‘conditional estimator’) or the population‐averaged (‘marginal’) estimator of the dynamic regimes. Analytical sample size calculations for the parallel design and the conditional estimator are compared with simulated results for the population‐averaged estimator. We conclude that in specific settings, well‐chosen SMAR designs may require fewer data for the development of more cost‐efficient treatment strategies than parallel designs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
In some exceptional circumstances, as in very rare diseases, nonrandomized one‐arm trials are the sole source of evidence to demonstrate efficacy and safety of a new treatment. The design of such studies needs a sound methodological approach in order to provide reliable information, and the determination of the appropriate sample size still represents a critical step of this planning process. As, to our knowledge, no method exists for sample size calculation in one‐arm trials with a recurrent event endpoint, we propose here a closed sample size formula. It is derived assuming a mixed Poisson process, and it is based on the asymptotic distribution of the one‐sample robust nonparametric test recently developed for the analysis of recurrent events data. The validity of this formula in managing a situation with heterogeneity of event rates, both in time and between patients, and time‐varying treatment effect was demonstrated with exhaustive simulation studies. Moreover, although the method requires the specification of a process for events generation, it seems to be robust under erroneous definition of this process, provided that the number of events at the end of the study is similar to the one assumed in the planning phase. The motivating clinical context is represented by a nonrandomized one‐arm study on gene therapy in a very rare immunodeficiency in children (ADA‐SCID), where a major endpoint is the recurrence of severe infections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

A convention in designing randomized clinical trials has been to choose sample sizes that yield specified statistical power when testing hypotheses about treatment response. Manski and Tetenov recently critiqued this convention and proposed enrollment of sufficiently many subjects to enable near-optimal treatment choices. This article develops a refined version of that analysis applicable to trials comparing aggressive treatment of patients with surveillance. The need for a refined analysis arises because the earlier work assumed that there is only a primary health outcome of interest, without secondary outcomes. An important aspect of choice between surveillance and aggressive treatment is that the latter may have side effects. One should then consider how the primary outcome and side effects jointly determine patient welfare. This requires new analysis of sample design. As a case study, we reconsider a trial comparing nodal observation and lymph node dissection when treating patients with cutaneous melanoma. Using a statistical power calculation, the investigators assigned 971 patients to dissection and 968 to observation. We conclude that assigning 244 patients to each option would yield findings that enable suitably near-optimal treatment choice. Thus, a much smaller sample size would have sufficed to inform clinical practice.  相似文献   

16.
In some randomized (drug versus placebo) clinical trials, the estimand of interest is the between‐treatment difference in population means of a clinical endpoint that is free from the confounding effects of “rescue” medication (e.g., HbA1c change from baseline at 24 weeks that would be observed without rescue medication regardless of whether or when the assigned treatment was discontinued). In such settings, a missing data problem arises if some patients prematurely discontinue from the trial or initiate rescue medication while in the trial, the latter necessitating the discarding of post‐rescue data. We caution that the commonly used mixed‐effects model repeated measures analysis with the embedded missing at random assumption can deliver an exaggerated estimate of the aforementioned estimand of interest. This happens, in part, due to implicit imputation of an overly optimistic mean for “dropouts” (i.e., patients with missing endpoint data of interest) in the drug arm. We propose an alternative approach in which the missing mean for the drug arm dropouts is explicitly replaced with either the estimated mean of the entire endpoint distribution under placebo (primary analysis) or a sequence of increasingly more conservative means within a tipping point framework (sensitivity analysis); patient‐level imputation is not required. A supplemental “dropout = failure” analysis is considered in which a common poor outcome is imputed for all dropouts followed by a between‐treatment comparison using quantile regression. All analyses address the same estimand and can adjust for baseline covariates. Three examples and simulation results are used to support our recommendations.  相似文献   

17.
In this paper, we develop the methodology for designing clinical trials with any factorial arrangement when the primary outcome is time to event. We provide a matrix formulation for calculating the sample size and study duration necessary to test any effect with a prespecified type I error rate and power. Assuming that a time to event follows an exponential distribution, we describe the relationships between the effect size, the power, and the sample size. We present examples for illustration purposes. We provide a simulation study to verify the numerical calculations of the expected number of events and the duration of the trial. The change in the power produced by a reduced number of observations or by accruing no patients to certain factorial combinations is also described.  相似文献   

18.
Traditionally, in clinical development plan, phase II trials are relatively small and can be expected to result in a large degree of uncertainty in the estimates based on which Phase III trials are planned. Phase II trials are also to explore appropriate primary efficacy endpoint(s) or patient populations. When the biology of the disease and pathogenesis of disease progression are well understood, the phase II and phase III studies may be performed in the same patient population with the same primary endpoint, e.g. efficacy measured by HbA1c in non-insulin dependent diabetes mellitus trials with treatment duration of at least three months. In the disease areas that molecular pathways are not well established or the clinical outcome endpoint may not be observed in a short-term study, e.g. mortality in cancer or AIDS trials, the treatment effect may be postulated through use of intermediate surrogate endpoint in phase II trials. However, in many cases, we generally explore the appropriate clinical endpoint in the phase II trials. An important question is how much of the effect observed in the surrogate endpoint in the phase II study can be translated into the clinical effect in the phase III trial. Another question is how much of the uncertainty remains in phase III trials. In this work, we study the utility of adaptation by design (not by statistical test) in the sense of adapting the phase II information for planning the phase III trials. That is, we investigate the impact of using various phase II effect size estimates on the sample size planning for phase III trials. In general, if the point estimate of the phase II trial is used for planning, it is advisable to size the phase III trial by choosing a smaller alpha level or a higher power level. The adaptation via using the lower limit of the one standard deviation confidence interval from the phase II trial appears to be a reasonable choice since it balances well between the empirical power of the launched trials and the proportion of trials not launched if a threshold lower than the true effect size of phase III trial can be chosen for determining whether the phase III trial is to be launched.  相似文献   

19.
In this paper, we consider the analysis of recurrent event data that examines the differences between two treatments. The outcomes that are considered in the analysis are the pre-randomisation event count and post-randomisation times to first and second events with associated cure fractions. We develop methods that allow pre-randomisation counts and two post-randomisation survival times to be jointly modelled under a Poisson process framework, assuming that outcomes are predicted by (unobserved) event rates. We apply these methods to data that examine the difference between immediate and deferred treatment policies in patients presenting with single seizures or early epilepsy. We find evidence to suggest that post-randomisation seizure rates change at randomisation and following a first seizure after randomisation. We also find that there are cure rates associated with the post-randomisation times to first and second seizures. The increase in power over standard survival techniques, offered by the joint models that we propose, resulted in more precise estimates of the treatment effect and the ability to detect interactions with covariate effects.  相似文献   

20.
Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2‐arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号