首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a Bayesian Analysis for the Block and Basu bivariate exponential distribution using Markov Chain Monte Carlo (MCMC) methods and considering lifetimes in presence of covariates and censored data. Posterior summaries of interest are obtained using the popular WinBUGS software. Numerical illustrations are introduced considering a medical data set related to the recurrence times of infection for kidney patients and a medical data set related to bone marrow transplantation for leukemia.  相似文献   

2.
Abstract

In this paper, we focus on the left-truncated and right-censored model, and construct the local linear and Nadaraya-Watson type estimators of the conditional density. Under suitable conditions, we establish the asymptotic normality of the proposed estimators when the observations are assumed to be a stationary α-mixing sequence. Finite sample behavior of the estimators is investigated via simulations too.  相似文献   

3.
In this paper, we studied the uniform convergence with rates for the kernel estimator of the conditional mode function for a left truncated and right censored model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. Also, the asymptotic normality of the estimator is established.  相似文献   

4.
In this paper, we construct a Bayes shrinkage estimator for the Rayleigh scale parameter based on censored data under the squared log error loss function. Risk-unbiased estimator is derived and its risk is computed. A Bayes shrinkage estimator is obtained when a prior point guess value is available for the scale parameter. Risk-bias of the Bayes shrinkage estimator is considered. A comparison between the proposed Bayes shrinkage estimator and the risk-unbiased estimator is provided using calculation of the relative efficiency. A numerical example is presented for illustrative and comparative purposes.  相似文献   

5.
The article presents the Bayesian inference for the parameters of randomly censored Burr-type XII distribution with proportional hazards. The joint conjugate prior of the proposed model parameters does not exist; we consider two different systems of priors for Bayesian estimation. The explicit forms of the Bayes estimators are not possible; we use Lindley's method to obtain the Bayes estimates. However, it is not possible to obtain the Bayesian credible intervals with Lindley's method; we suggest the Gibbs sampling procedure for this purpose. Numerical experiments are performed to check the properties of the different estimators. The proposed methodology is applied to a real-life data for illustrative purposes. The Bayes estimators are compared with the Maximum likelihood estimators via numerical experiments and real data analysis. The model is validated using posterior predictive simulation in order to ascertain its appropriateness.  相似文献   

6.
This paper deals with the Bayesian estimation of generalized exponential distribution in the proportional hazards model of random censorship under asymmetric loss functions. It is well known for the two-parameter lifetime distributions that the continuous conjugate priors for parameters do not exist; we assume independent gamma priors for the scale and the shape parameters. It is observed that the closed-form expressions for the Bayes estimators cannot be obtained; we propose Tierney–Kadane's approximation and Gibbs sampling to approximate the Bayes estimates. Monte Carlo simulation is carried out to observe the behavior of the proposed methods and one real data analysis is performed for illustration. Bayesian methods are compared with maximum likelihood and it is observed that the Bayes estimators perform better than the maximum-likelihood estimators in some cases.  相似文献   

7.
In this paper, we consider posterior predictive distributions of Type-II censored data for an inverse Weibull distribution. These functions are given by using conditional density functions and conditional survival functions. Although the conditional survival functions were expressed by integral forms in previous studies, we derive the conditional survival functions in closed forms and thereby reduce the computation cost. In addition, we calculate the predictive confidence intervals of unobserved values and coverage probabilities of unobserved values by using the posterior predictive survival functions.  相似文献   

8.
In this paper we develop nonparametric methods for regression analysis when the response variable is subject to censoring and/or truncation. The development is based on a data completion princple that enables us to apply, via an iterative scheme, nonparametric regression techniques to iteratively com¬pleted data from a given sample with censored and/or truncated observations. In particular, locally weighted regression smoothers and additive regression models are extended to left-truncated and right-censored data Nonparamet¬ric regression analysis is applied to the Stanford heart transplant data, which have been analyzed by previous authors using semiparametric regression meth¬ods. and provides new insights into the relationship between expected survival time after a heart transplant and explanatory variables.  相似文献   

9.
We study variable sampling plans for exponential distributions based on type-I hybrid censored samples. For this problem, two sampling plans based on the non-failure sample proportion and the conditional maximum likelihood estimator are proposed by Chen et al. [J. Chen, W. Chou, H. Wu, and H. Zhou, Designing acceptance sampling schemes for life testing with mixed censoring, Naval Res. Logist. 51 (2004), pp. 597–612] and Lin et al. [C.-T. Lin, Y.-L. Huang, and N. Balakrishnan, Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II censored samples, Commun. Statist. Simul. Comput. 37 (2008), pp. 1101–1116], respectively. From the theoretic decision point of view, the preceding two sampling plans are not optimal due to their decision functions not being the Bayes decision functions. In this article, we consider the decision theoretic approach, and the optimal Bayesian sampling plan based on sufficient statistics is derived under a general loss function. Furthermore, for the conjugate prior distribution, the closed-form formula of the Bayes decision rule can be obtained under either the linear or quadratic decision loss. The resulting Bayesian sampling plan has the minimum Bayes risk, and hence it is better than the sampling plans proposed by Chen et al. (2004) and Lin et al. (2008). Numerical comparisons are given and demonstrate that the performance of the proposed Bayesian sampling plan is superior to that of Chen et al. (2004) and Lin et al. (2008).  相似文献   

10.
In this paper, and based on a progressive type-II censored sample from the generalized Rayleigh (GR) distribution, we consider the problem of estimating the model parameters and predicting the unobserved removed data. Maximum likelihood and Bayesian approaches are used to estimate the scale and shape parameters. The Gibbs and Metropolis samplers are used to predict the life lengths of the removed units in multiple stages of the progressively censored sample. Artificial and real data analyses have been performed for illustrative purposes.  相似文献   

11.
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure.  相似文献   

12.
The authors propose a reduction technique and versions of the EM algorithm and the vertex exchange method to perform constrained nonparametric maximum likelihood estimation of the cumulative distribution function given interval censored data. The constrained vertex exchange method can be used in practice to produce likelihood intervals for the cumulative distribution function. In particular, the authors show how to produce a confidence interval with known asymptotic coverage for the survival function given current status data.  相似文献   

13.
Two nonparametric estimators o f the survival distributionare discussed. The estimators were proposed by Kaplan and Meier (1958) and Breslow (1972) and are applicable when dealing with censored data. It is known that they are asymptotically unbiased and uniformly strongly consistent, and when properly normalized that they converge weakly to the same Gaussian process. In this paper, the properties of the estimators are carefully inspected in small or moderate samples. The Breslow estimator, a shrinkage version of the Kaplan-Meier, nearly always has the smaller mean square error (MSE) whenever the truesurvival probabilityis at least 0.20, but has considerably larger MSE than the Kaplan-Meier estimator when the survivalprobability is near zero.  相似文献   

14.
The problem of estimating the one parameter exponential reliability function for a system composed of l componentes in series is considered. Under the type II censoring scheme, the Bayes nature of the minimum variance unbiased estimator is demonstrated and the admissibility of related generalized Bayes estimators is established. For the one component case, the best unbiased estimator is admissible.  相似文献   

15.
In this paper, we focus on exact inference for exponential distribution under multiple Type-I censoring, which is a general form of Type-I censoring and represents that the units are terminated at different times. The maximum likelihood estimate of mean parameter is calculated. Further, the distribution of maximum likelihood estimate is derived and it yields an exact lower confidence limit for the mean parameter. Based on a simulation study, we conclude that the exact limit outperforms the bootstrap limit in terms of the coverage probability and average limit. Finally, a real dataset is analyzed for illustration.  相似文献   

16.
ABSTRACT

We consider point and interval estimation of the unknown parameters of a generalized inverted exponential distribution in the presence of hybrid censoring. The maximum likelihood estimates are obtained using EM algorithm. We then compute Fisher information matrix using the missing value principle. Bayes estimates are derived under squared error and general entropy loss functions. Furthermore, approximate Bayes estimates are obtained using Tierney and Kadane method as well as using importance sampling approach. Asymptotic and highest posterior density intervals are also constructed. Proposed estimates are compared numerically using Monte Carlo simulations and a real data set is analyzed for illustrative purposes.  相似文献   

17.
In this paper, we consider the Bayesian inference of the unknown parameters of the randomly censored Weibull distribution. A joint conjugate prior on the model parameters does not exist; we assume that the parameters have independent gamma priors. Since closed-form expressions for the Bayes estimators cannot be obtained, we use Lindley's approximation, importance sampling and Gibbs sampling techniques to obtain the approximate Bayes estimates and the corresponding credible intervals. A simulation study is performed to observe the behaviour of the proposed estimators. A real data analysis is presented for illustrative purposes.  相似文献   

18.
In this paper we show that the Marshall-Olkin extended Weibull distribution can be obtained as a compound distribution with mixing exponential distribution. In addition, we provide simple sufficient conditions for the shape of the hazard rate function of the distribution. Moreover, we extend the considered distribution to accommodate randomly right censored data. Finally, application of the extended distribution to a data set representing the remission times of bladder cancer patients is given and its goodness-of-fit is demonstrated.  相似文献   

19.
There may be situations in which either the reliability data do not fit to popular lifetime models or the estimation of the parameters is not easy, while there may be other distributions which are not popular but either they provide better goodness-of-fit or have a smaller number of parameters to be estimated, or they have both the advantages. This paper proposes the Maxwell distribution as a lifetime model and supports its usefulness in the reliability theory through real data examples. Important distributional properties and reliability characteristics of this model are elucidated. Estimation procedures for the parameter, mean life, reliability and failure-rate functions are developed. In view of cost constraints and convenience of intermediate removals, the progressively Type-II censored sample information is used in the estimation. The efficiencies of the estimates are studied through simulation. Apart from researchers and practitioners in the reliability theory, the study is also useful for scientists in physics and chemistry, where the Maxwell distribution is widely used.  相似文献   

20.
The power function distribution is often used to study the electrical component reliability. In this paper, we model a heterogeneous population using the two-component mixture of the power function distribution. A comprehensive simulation scheme including a large number of parameter points is followed to highlight the properties and behavior of the estimates in terms of sample size, censoring rate, parameters size and the proportion of the components of the mixture. The parameters of the power function mixture are estimated and compared using the Bayes estimates. A simulated mixture data with censored observations is generated by probabilistic mixing for the computational purposes. Elegant closed form expressions for the Bayes estimators and their variances are derived for the censored sample as well as for the complete sample. Some interesting comparison and properties of the estimates are observed and presented. The system of three non-linear equations, required to be solved iteratively for the computations of maximum likelihood (ML) estimates, is derived. The complete sample expressions for the ML estimates and for their variances are also given. The components of the information matrix are constructed as well. Uninformative as well as informative priors are assumed for the derivation of the Bayes estimators. A real-life mixture data example has also been discussed. The posterior predictive distribution with the informative Gamma prior is derived, and the equations required to find the lower and upper limits of the predictive intervals are constructed. The Bayes estimates are evaluated under the squared error loss function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号