首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this work, we proposed an adaptive multivariate cumulative sum (CUSUM) statistical process control chart for signaling a range of location shifts. This method was based on the multivariate CUSUM control chart proposed by Pignatiello and Runger (1990 Pignatiello, J.J., Runger, G.C. (1990). Comparisons of multivariate CUSUM charts. J. Qual. Technol. 22(3):173186.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]), but we adopted the adaptive approach similar to that discussed by Dai et al. (2011 Dai, Y., Luo, Y., Li, Z., Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Qual. Reliab. Eng. Int. 27(7):877884.[Crossref], [Web of Science ®] [Google Scholar]), which was based on a different CUSUM method introduced by Crosier (1988 Crosier, R.B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 30(3):291303.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The reference value in this proposed procedure was changed adaptively in each run, with the current mean shift estimated by exponentially weighted moving average (EWMA) statistic. By specifying the minimal magnitude of the mean shift, our proposed control chart achieved a good overall performance for detecting a range of shifts rather than a single value. We compared our adaptive multivariate CUSUM method with that of Dai et al. (2001 Dai, Y., Luo, Y., Li, Z., Wang, Z. (2011). A new adaptive CUSUM control chart for detecting the multivariate process mean. Qual. Reliab. Eng. Int. 27(7):877884.[Crossref], [Web of Science ®] [Google Scholar]) and the non adaptive versions of these two methods, by evaluating both the steady state and zero state average run length (ARL) values. The detection efficiency of our method showed improvements over the comparative methods when the location shift is unknown but falls within an expected range.  相似文献   

2.
In this paper we use Monte Carlo Simulation methodology to compare the effectiveness of five multivariate quality control methods, namely Hotelling T 2, Multivariate Shewhart Char, Discriminant Analysis, Decomposition Method, and Multivariate Ridge Residual Chart-developed by Authors-, for controlling the mean vector in a multivariate process. P-dimensional multivariate normal data generated using different covariance structures. Various amount of shift in the mean vector is induced and the resulting Average Run Length (ARL) is computed. The effectiveness of each method with regard to ARL is discussed.  相似文献   

3.
In this article, we propose new cumulative sum (CUSUM) control charts using the ordered ranked set sampling (RSS) and ordered double RSS schemes, with the perfect and imperfect rankings, for monitoring the variability of a normally distributed process. The run length characteristics of the proposed CUSUM charts are computed using the Monte Carlo simulations. The proposed CUSUM charts are compared in terms of the average and standard deviation of run lengths with their existing competitor CUSUM charts based on simple random sampling. It turns out that the proposed CUSUM charts with the perfect and imperfect rankings are more sensitive than the existing CUSUM charts based on the sample range and standard deviation. A similar trend is present when these CUSUM charts are compared with the fast initial response features. An example is also used to demonstrate the implementation and working of the proposed CUSUM charts.  相似文献   

4.
ABSTRACT

Recently considerable research has been devoted to monitoring increases of incidence rate of adverse rare events. This paper extends some one-sided upper exponentially weighted moving average (EWMA) control charts from monitoring normal means to monitoring Poisson rate when sample sizes are varying over time. The approximated average run length bounds are derived for these EWMA-type charts and compared with the EWMA chart previously studied. Extensive simulations have been conducted to compare the performance of these EWMA-type charts. An illustrative example is given.  相似文献   

5.
This article proposes a multivariate control chart, the syn-|S| chart, which comprises a standard |S| subchart and a multivariate synthetic sample generalized variance |S| (synthetic |S|) subchart, for detecting shifts in the covariance matrix of a multivariate normally distributed process. A procedure for the optimal design of the syn-|S| chart by minimizing the average extra quadratic loss is provided. The syn-|S| chart has better overall performance compared to the synthetic |S| chart and the standard |S| chart, based on the zero-state and steady-state modes. An example is given to illustrate the operation of the synthetic |S| chart.  相似文献   

6.
In this paper, we propose new cumulative sum (CUSUM) and Shewhart-CUSUM (SCUSUM) control charts for monitoring the process mean using ranked-set sampling (RSS) and ordered RSS (ORSS) schemes. The proposed CUSUM charts include the Crosier's CUSUM (CCUSUM) and Shewhart-CCUSUM (SCCUSUM) charts using RSS, and the CUSUM, CCUSUM, SCUSUM and SCCUSUM charts using ORSS. Moreover, fast initial response features are also attached with these CUSUM charts to improve their sensitivities for an initial out-of-control situation. Monte Carlo simulations are used to compute the run length characteristics of the proposed CUSUM charts. Upon comparing the run length performances of the CUSUM charts, it turns out that the proposed CUSUM charts are more sensitive than their existing counterparts. A real dataset is used to explain the implementation of the proposed CUSUM charts.  相似文献   

7.
In some applications, quality engineers cannot monitor the processes at the beginning of the production process. Because the process parameters are unknown and there are not enough initial samples to estimate the process parameters. Self-starting control charts are applied to monitor processes at the start-up stages with no enough initial samples. In this paper, we propose three self-starting control charts to monitor a logistic regression profile which models the relationship between a binomial response variable and explanatory variables. Also, we compare the proposed control charts with each other through simulation studies in terms of average run length (ARL) criterion.  相似文献   

8.
Change point estimation procedures simplify the efforts to search for and identify special causes in multivariate statistical process monitoring. After a signal is generated by the simultaneously used control charts or a single control chart, add-on change point procedure estimates the time of the change. In this study, multivariate joint change point estimation performance for simultaneous monitoring of both location and dispersion is compared under the assumption that various single charts are used to monitor the process. The change detection performance for several structural changes for the mean vector and covariance matrix is also discussed. It is concluded that choice of the control chart to obtain a signal may affect the change point detection performance.  相似文献   

9.
In this paper, a new non-parametric multivariate exponentially weighted moving average (NMEWMA) sign chart is proposed for monitoring the process dispersion. The run length characteristics of the NMEWMA sign chart are computed with the help of Markov chain and Monte Carlo simulations. Moreover, the NMEWMA sign chart is also used to detect changes in the process mean and dispersion simultaneously. An illustrative example is also used to explain the implementation of proposed control chart.  相似文献   

10.
11.
In this paper control charts for the mean of a multivariate Gaussian process are considered. Using the generalized likelihood ratio approach and the sequential probability ratio test under an additional constraint on the magnitude of the change various types of CUSUM control charts are derived. It is analyzed under which conditions these schemes are directionally invariant. These charts are compared with several other control schemes proposed in literature. The performance of the charts is studied based on the maximum average delay.  相似文献   

12.
In this article, we study exponentially weighted moving average (EWMA) control schemes to monitor the multivariate Poisson distribution with a general covariance structure, so that the practitioner can simultaneously monitor multiple correlated attribute processes more effectively. The statistical performance of the charts is assessed in terms of the run length properties and compared against other mainstream attribute control schemes. The application of the proposed methods to real-life and simulated datasets is demonstrated.  相似文献   

13.
14.
Simultaneous monitoring of the mean vector and covariance matrix in multivariate processes allows practitioners to avoid the inflated false alarm rate that results from using two independent control charts. In this paper, we extend exponentially weighted moving average semicircle and generally weighted moving average semicircle control charts to monitor the mean vector and covariance matrix of multivariate multiple linear regression profiles in Phase II simultaneously. These new control charts are compared with the existing control charts in the literature in terms of the average run length criterion. Finally, a case is considered to show the application of the proposed charts.  相似文献   

15.
The Shewhart R control chart and s control chart are widely used to monitor shifts in the process spread. One fact is that the distributions of the range and sample standard deviation are highly skewed. Therefore, the R chart and s chart neither provide an in-control average run length (ARL) of approximately 370 nor guarantee the desired type I error of 0.0027. Another disadvantage of these two charts is their failure in detecting an improvement in the process variability. In order to overcome these shortcomings, we propose the improved R chart (IRC) and s chart (ISC) with accurate approximation of the control limits by using cumulative distribution functions of the sample range and standard deviation. Simulation studies show that the IRC and ISC perform very well. We also compare the type II error risks and ARLs of the IRC and ISC and found that the s chart is generally more efficient than the R chart. Examples are given to illustrate the use of the developed charts.  相似文献   

16.
The exponentially weighted moving average (EWMA) control chart is efficient in detecting small changes in process parameters but less efficient when the changes are relatively large, due to what is known as the inertia problem. To diminish the inertia, an adaptive EWMA (AEWMA) chart has been proposed for monitoring process locations to improve over the traditional EWMA charts. The basic idea of the AEWMA scheme is to dynamically weight the past observations according to a suitable function of the current prediction error. This article extends the idea of the AEWMA chart for monitoring process locations to the case of monitoring process dispersion. A Markov chain model is established to analyze and design the suggested chart. It is shown that the AEWMA dispersion chart performs better than the EWMA and other dispersion charts in terms of its ability to perform relatively well at both small and large changes in process dispersion.  相似文献   

17.
Normally, an average run length (ARL) is used as a measure for evaluating the detecting performance of a multivariate control chart. This has a direct impact on the false alarm cost in Phase II. In this article, we first conduct a simulation study to calculate both in-control and out-of-control ARLs under various combinations of process shifts and number of samples. Then, a trade-off analysis between sampling inspection and false alarm costs is performed. Both the simulation results and trade-off analysis suggest that the optimal number of samples for constructing a multivariate control chart in Phase I can be determined.  相似文献   

18.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

19.
Good control charts for high quality processes are often based on the number of successes between failures. Geometric charts are simplest in this respect, but slow in recognizing moderately increased failure rates p. Improvement can be achieved by waiting until r>1 failures have occurred, i.e. by using negative binomial charts. In this paper we analyze such charts in some detail. On the basis of a fair comparison, we demonstrate how the optimal r is related to the degree of increase of p. As in practice p will usually be unknown, we also analyze the estimated version of the charts. In particular, simple corrections are derived to control the nonnegligible effects of this estimation step.  相似文献   

20.
Statistical control charts are widely used in the manufacturing industry. The Shewhart-type control charts are developed to improve the monitoring process mean by using the double quartile-ranked set sampling, quartile double-ranked set sampling, and double extreme-ranked set sampling methods. In terms of the average run length, the performance of the proposed control charts are compared with the existing control charts based on simple random sampling, ranked set sampling and extreme-ranked set sampling methods. An application of real data is also considered to investigate the performance of the suggested process mean control charts. The findings of the study revealed that the newly suggested control charts are superior to the existing counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号