共查询到20条相似文献,搜索用时 15 毫秒
1.
A central limit theorem for a linear combination of all the maximum likelihood estimators with an increasing dimension for affiliation networks has been established. Simulation studies are provided to illustrate the asymptotic results. 相似文献
2.
AbstractThe asymptotic normality of a fixed number of the maximum likelihood estimators (MLEs) in the affiliation finite discrete weighted networks with an increasing degree sequence has been established recently. In this article, we further derive a central limit theorem for a linear combination of all the MLEs with an increasing dimension. Simulation studies are provided to illustrate the asymptotic results. 相似文献
3.
In this paper, we consider, using technique based on Girsanov theorem, the problem of efficient estimation for the drift of subfractional Brownian motion SH ? (SHt)t ∈ [0, T]. We also construct a class of biased estimators of James-Stein type which dominate, under the usual quadratic risk, the natural maximum likelihood estimator. 相似文献
4.
《Journal of nonparametric statistics》2012,24(2):209-228
Until now integrated square error (ISE) for kernel smoothing estimators has been thoroughly investigated in the context of bandwidth selection, while little work has been done for its alternative, average square error (ASE), mainly because ASE and ISE have been regarded to be nearly equivalent. In this paper convergence rate of ASE and difference between ISE and ASE are studied, which reveals that curse of dimension affects square errors in regression setting and there exists a cutoff point in dimension where ASE and ISE are no longer asymptotically equivalent. 相似文献
5.
Robert C. Tumbleson 《The American statistician》2013,67(1):7-11
This article compares the accuracy of the median unbiased estimator with that of the maximum likelihood estimator for a logistic regression model with two binary covariates. The former estimator is shown to be uniformly more accurate than the latter for small to moderately large sample sizes and a broad range of parameter values. In view of the recently developed efficient algorithms for generating exact distributions of sufficient statistics in binary-data problems, these results call for a serious consideration of median unbiased estimation as an alternative to maximum likelihood estimation, especially when the sample size is not large, or when the data structure is sparse. 相似文献
6.
This paper focuses on a novel method of developing one-sample confidence bands for survival functions from right censored data. The approach is model-based, relying on a parametric model for the conditional expectation of the censoring indicator given the observed minimum, and derives its strength from easy access to a good-fitting model among a plethora of choices available for binary response data. The substantive methodological contribution is in exploiting a semiparametric estimator of the survival function to produce improved simultaneous confidence bands. To obtain critical values for computing the confidence bands, a two-stage bootstrap approach that combines the classical bootstrap with the more recent model-based regeneration of censoring indicators is proposed and a justification of its asymptotic validity is also provided. Several different confidence bands are studied using the proposed approach. Numerical studies, including robustness of the proposed bands to misspecification, are carried out to check efficacy. The method is illustrated using two lung cancer data sets. 相似文献
7.
This paper deals with the problem of estimating the Pearson correlation coefficient when one variable is subject to left or right censoring. In parallel to the classical results on the Pearson correlation coefficient, we derive a workable formula, through tedious computation and intensive simplification, of the asymptotic variances of the maximum likelihood estimators in two cases: (1) known means and variances and (2) unknown means and variances. We illustrate the usefulness of the asymptotic results in experimental designs. 相似文献
8.
This article addresses two methods of estimation of the probability density function (PDF) and cumulative distribution function (CDF) for the Lindley distribution. Following estimation methods are considered: uniformly minimum variance unbiased estimator (UMVUE) and maximum likelihood estimator (MLE). Since the Lindley distribution is more flexible than the exponential distribution, the same estimators have been found out for the exponential distribution and compared. Monte Carlo simulations and a real data analysis are performed to compare the performances of the proposed methods of estimation. 相似文献
9.
Salman Babayi 《统计学通讯:理论与方法》2017,46(20):10315-10326
This article studies the estimation of R = P[X < Y] when X and Y are two independent skew normal distribution with different parameters. When the scale parameter is unknown, the maximum likelihood estimator of R is proposed. The maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are obtained when the common scale parameter is known. In the general case, the maximum likelihood estimator of R is also discussed. To compare the different proposed methods, Monte Carlo simulations are performed. At last, the analysis of a real dataset has been presented for illustrative purposes too. 相似文献
10.
We consider a class of dependent Bernoulli variables where the conditional success probability is a linear combination of the last few trials and the original success probability. We obtain its limit theorems including the strong law of large numbers, weak invariance principle, and law of the iterated logarithm. We also derive some statistical inference results which make the model applicable. Simulation results are exhibited as well to show that with small sample size the convergence rate is satisfying and the proposed estimators behave well. 相似文献
11.
Chunlin Wang 《统计学通讯:理论与方法》2013,42(14):4285-4294
ABSTRACTThe generalized Pareto distribution (GPD) is important in the analysis of extreme values, especially in modeling exceedances over thresholds. Most of the existing methods for estimating the scale and shape parameters of the GPD suffer from theoretical and/or computational problems. A new hybrid estimation method is proposed in this article, which minimizes a goodness-of-fit measure and incorporates some useful likelihood information. Compared with the maximum likelihood method and other leading methods, our new hybrid estimation method retains high efficiency, reduces the estimation bias, and is computation friendly. 相似文献
12.
ABSTRACTIn this paper, we propose two new simple estimation methods for the two-parameter gamma distribution. The first one is a modified version of the method of moments, whereas the second one makes use of some key properties of the distribution. We then derive the asymptotic distributions of these estimators. Also, bias-reduction methods are suggested to reduce the bias of these estimators. The performance of the estimators are evaluated through a Monte Carlo simulation study. The probability coverages of confidence intervals are also discussed. Finally, two examples are used to illustrate the proposed methods. 相似文献
13.
ABSTRACTWhen a distribution function is in the max domain of attraction of an extreme value distribution, its tail can be well approximated by a generalized Pareto distribution. Based on this fact we use a moment estimation idea to propose an adapted maximum likelihood estimator for the extreme value index, which can be understood as a combination of the maximum likelihood estimation and moment estimation. Under certain regularity conditions, we derive the asymptotic normality of the new estimator and investigate its finite sample behavior by comparing with several classical or competitive estimators. A simulation study shows that the new estimator is competitive with other estimators in view of average bias, average MSE, and coefficient of variance of the new device for the optimal selection of the threshold. 相似文献
14.
《统计学通讯:模拟与计算》2013,42(4):523-537
ABSTRACT The paper deals with Bayes estimation of the exponentiated Weibull shape parameters under linex loss function when independent non-informative type of priors are available for the parameters. Generalized maximum likelihood estimators have also been obtained. Performances of the proposed Bayes estimator, generalized maximum likelihood estimators, posterior mean (i.e., Bayes estimator under squared error loss function) and maximum likelihood estimators have been studied on the basis of their risks under linex loss function. The comparison is based on a simulation study because the expressions for risk functions of these estimators cannot be obtained in nice closed forms. 相似文献
15.
In this study, testing the equality of mean vectors in a one-way multivariate analysis of variance (MANOVA) is considered when each dataset has a monotone pattern of missing observations. The likelihood ratio test (LRT) statistic in a one-way MANOVA with monotone missing data is given. Furthermore, the modified test (MT) statistic based on likelihood ratio (LR) and the modified LRT (MLRT) statistic with monotone missing data are proposed using the decomposition of the LR and an asymptotic expansion for each decomposed LR. The accuracy of the approximation for the Chi-square distribution is investigated using a Monte Carlo simulation. Finally, an example is given to illustrate the methods. 相似文献
16.
AbstractIn this work, we introduce a new skewed slash distribution. This modification of the skew-slash distribution is obtained by the quotient of two independent random variables. That quotient consists on a skew-normal distribution divided by a power of an exponential distribution with scale parameter equal to two. In this way, the new skew distribution has a heavier tail than that of the skew-slash distribution. We give the probability density function expressed by an integral, but we obtain some important properties useful for making inferences, such as moment estimators and maximum likelihood estimators. By way of illustration and by using real data, we provide maximum likelihood estimates for the parameters of the modified skew-slash and the skew-slash distributions. Finally, we introduce a multivariate version of this new distribution. 相似文献
17.
《Journal of Statistical Computation and Simulation》2012,82(18):3653-3666
ABSTRACTThe Marshall–Olkin extended two-parameter bathtub distribution is introduced and its structural properties are investigated, including the compounding representation of the distribution, the shapes of the density and the hazard rate function, the moments and quantiles. Estimation of the model parameters by maximum likelihood is discussed. Applications to some real data sets which motivate the usefulness of the model are provided. Comparison between the proposed model and other commonly used distributions is performed using real data sets. A simulation study is presented to investigate the accuracy of the estimates of the model's parameters. 相似文献
18.
M. Gharib 《Australian & New Zealand Journal of Statistics》1998,40(1):95-102
This paper obtains some estimates for the rate of convergence in the multi-dimensional central limit theorem for vector-valued functions of a homogeneous Markov chain without assuming the finiteness of their absolute third moment. These estimates have a universal character and generalize the results that hold when the third moments are finite. 相似文献
19.
This paper compares methods of estimation for the parameters of a Pareto distribution of the first kind to determine which method provides the better estimates when the observations are censored, The unweighted least squares (LS) and the maximum likelihood estimates (MLE) are presented for both censored and uncensored data. The MLE's are obtained using two methods, In the first, called the ML method, it is shown that log-likelihood is maximized when the scale parameter is the minimum sample value. In the second method, called the modified ML (MML) method, the estimates are found by utilizing the maximum likelihood value of the shape parameter in terms of the scale parameter and the equation for the mean of the first order statistic as a function of both parameters. Since censored data often occur in applications, we study two types of censoring for their effects on the methods of estimation: Type II censoring and multiple random censoring. In this study we consider different sample sizes and several values of the true shape and scale parameters. Comparisons are made in terms of bias and the mean squared error of the estimates. We propose that the LS method be generally preferred over the ML and MML methods for estimating the Pareto parameter γ for all sample sizes, all values of the parameter and for both complete and censored samples. In many cases, however, the ML estimates are comparable in their efficiency, so that either estimator can effectively be used. For estimating the parameter α, the LS method is also generally preferred for smaller values of the parameter (α ≤4). For the larger values of the parameter, and for censored samples, the MML method appears superior to the other methods with a slight advantage over the LS method. For larger values of the parameter α, for censored samples and all methods, underestimation can be a problem. 相似文献
20.
The exponentiated Gumbel model has been shown to be useful in climate modeling including global warming problem, flood frequency analysis, offshore modeling, rainfall modeling, and wind speed modeling. Here, we consider estimation of the probability density function (PDF) and the cumulative distribution function (CDF) of the exponentiated Gumbel distribution. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least-square (LS) estimator, and weighted least-square (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others. 相似文献