首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a growth curve model. The maximum likelihood estimator (MLE) for the mean in a growth curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N. For both structures (a) and (b), we modify the MLE for the mean to an unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix.

To compare the performance of all four tests we compute for each structure (a) and (b) the attained significance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE.  相似文献   


2.
Abstract.  The Extended Growth Curve model is considered. It turns out that the estimated mean of the model is the projection of the observations on the space generated by the design matrices which turns out to be the sum of two tensor product spaces. The orthogonal complement of this space is decomposed into four orthogonal spaces and residuals are defined by projecting the observation matrix on the resulting components. The residuals are interpreted and some remarks are given as to why we should not use ordinary residuals, what kind of information our residuals give and how this information might be used to validate model assumptions and detect outliers and influential observations. It is shown that the residuals are symmetrically distributed around zero and are uncorrelated with each other. The covariance between the residuals and the estimated model as well as the dispersion matrices for the residuals are also given.  相似文献   

3.
《统计学通讯:理论与方法》2012,41(13-14):2602-2615
In this article, we consider the problem of testing a general multivariate linear hypothesis in a multivariate linear model when the N × p observation matrix is normally distributed with unknown covariance matrix, and N ≤ p. This includes the case of testing the equality of several mean vectors. A test is proposed which is a generalized version of the two-sample test proposed by Srivastava and Du (2008 Srivastava , M. S. , Du , M. ( 2008 ). A test for the mean vector with fewer observations than the dimension . J. Multivariate Anal. 99 : 386402 .[Crossref], [Web of Science ®] [Google Scholar]). The asymptotic null and nonnull distributions are obtained. The performance of this test is compared, theoretically as well as numerically, with the corresponding generalized version of the two-sample Dempster (1958 Dempster , A. P. (1958). A high dimensional two sample significance test. Ann. Math. Statist. 29:9951010.[Crossref] [Google Scholar]) test, or more appropriately Bai and Saranadasa (1996 Bai , Z. , Saranadasa , H. ( 1996 ). Effect of high dimension: an example of a two sample problem . Statistica Sinica 6 : 311329 .[Web of Science ®] [Google Scholar]) test who gave its asymptotic version.  相似文献   

4.
In this paper, we consider the problem of testing the mean vector in the multivariate setting where the dimension p is greater than the sample size n, namely a large p and small n problem. We propose a new scalar transform invariant test and show the asymptotic null distribution and power of the proposed test under weaker conditions than Srivastava (2009). We also present numerical studies including simulations and a real example of microarray data with comparison to existing tests developed for a large p and small n problem.  相似文献   

5.
This note is concerned with the limiting properties of the least squares estimation for the random coefficient autoregressive model. In contrast with existing results, ours is applicable to a wide range of models under more general assumptions.  相似文献   

6.
For a single-index autoregressive conditional heteroscedastic (ARCH-M) model, estimators of the parametric and non parametric components are proposed by the profile likelihood method. The research results had shown that all the estimators have consistency and the parametric estimators have asymptotic normality. We extend this line of research by deriving the asymptotic normality of the non parametric estimator. Based on the asymptotic properties, we propose Wald statistic and generalized likelihood ratio statistic to investigate the testing problems for ARCH effect and goodness of fit, respectively. A simulation study is conducted to evaluate the finite-sample performance of the proposed estimation methodology and testing procedure.  相似文献   

7.
The construction of confidence sets for the parameters of a flexible simple linear regression model for interval-valued random sets is addressed. For that purpose, the asymptotic distribution of the least-squares estimators is analyzed. A simulation study is conducted to investigate the performance of those confidence sets. In particular, the empirical coverages are examined for various interval linear models. The applicability of the procedure is illustrated by means of a real-life case study.  相似文献   

8.
When studying associations between a functional covariate and scalar response using a functional linear model (FLM), scientific knowledge may indicate possible monotonicity of the unknown parameter curve. In this context, we propose an F-type test of monotonicity, based on a full versus reduced nested model structure, where the reduced model with monotonically constrained parameter curve is nested within an unconstrained FLM. For estimation under the unconstrained FLM, we consider two approaches: penalised least-squares and linear mixed model effects estimation. We use a smooth then monotonise approach to estimate the reduced model, within the null space of monotone parameter curves. A bootstrap procedure is used to simulate the null distribution of the test statistic. We present a simulation study of the power of the proposed test, and illustrate the test using data from a head and neck cancer study.  相似文献   

9.
We consider a nonparametric autoregression model under conditional heteroscedasticity with the aim to test whether the innovation distribution changes in time. To this end, we develop an asymptotic expansion for the sequential empirical process of nonparametrically estimated innovations (residuals). We suggest a Kolmogorov–Smirnov statistic based on the difference of the estimated innovation distributions built from the first ?ns?and the last n ? ?ns? residuals, respectively (0 ≤ s ≤ 1). Weak convergence of the underlying stochastic process to a Gaussian process is proved under the null hypothesis of no change point. The result implies that the test is asymptotically distribution‐free. Consistency against fixed alternatives is shown. The small sample performance of the proposed test is investigated in a simulation study and the test is applied to a data example.  相似文献   

10.
A Bayesian test procedure Is developed to test; the null hypothesis of no change In the regression matrix of a multivariate lin¬ear model against the alternative hypothesis of exactly one change The resulting test is based on the marginal posterior distribution of the change point; To illustrate the test procedure a numerical example using a bivariate regression model is considered.  相似文献   

11.
In mixed linear models, it is frequently of interest to test hypotheses on the variance components. F-test and likelihood ratio test (LRT) are commonly used for such purposes. Current LRTs available in literature are based on limiting distribution theory. With the development of finite sample distribution theory, it becomes possible to derive the exact test for likelihood ratio statistic. In this paper, we consider the problem of testing null hypotheses on the variance component in a one-way balanced random effects model. We use the exact test for the likelihood ratio statistic and compare the performance of F-test and LRT. Simulations provide strong support of the equivalence between these two tests. Furthermore, we prove the equivalence between these two tests mathematically.  相似文献   

12.
The authors consider the linear model Yn = ψXn + ?n relating a functional response with explanatory variables. They propose a simple test of the nullity of ψ based on the principal component decomposition. The limiting distribution of their test statistic is chi‐squared, but this distribution is also an excellent approximation in finite samples. The authors illustrate their method using data from terrestrial magnetic observatories.  相似文献   

13.
In this paper, we consider an estimation for the unknown parameters of a conditional Gaussian MA(1) model. In the majority of cases, a maximum-likelihood estimator is chosen because the estimator is consistent. However, for small sample sizes the error is large, because the estimator has a bias of O(n? 1). Therefore, we provide a bias of O(n? 1) for the maximum-likelihood estimator for the conditional Gaussian MA(1) model. Moreover, we propose new estimators for the unknown parameters of the conditional Gaussian MA(1) model based on the bias of O(n? 1). We investigate the properties of the bias, as well as the asymptotical variance of the maximum-likelihood estimators for the unknown parameters, by performing some simulations. Finally, we demonstrate the validity of the new estimators through this simulation study.  相似文献   

14.
This paper is concerned with asymptotic distributions of functions of a sample covariance matrix under the elliptical model. Simple but useful formulae for calculating asymptotic variances and covariances of the functions are derived. Also, an asymptotic expansion formula for the expectation of a function of a sample covariance matrix is derived; it is given up to the second-order term with respect to the inverse of the sample size. Two examples are given: one of calculating the asymptotic variances and covariances of the stepdown multiple correlation coefficients, and the other of obtaining the asymptotic expansion formula for the moments of sample generalized variance.  相似文献   

15.
The authors consider hidden Markov models (HMMs) whose latent process has m ≥ 2 states and whose state‐dependent distributions arise from a general one‐parameter family. They propose a test of the hypothesis m = 2. Their procedure is an extension to HMMs of the modified likelihood ratio statistic proposed by Chen, Chen & Kalbfleisch (2004) for testing two states in a finite mixture. The authors determine the asymptotic distribution of their test under the hypothesis m = 2 and investigate its finite‐sample properties in a simulation study. Their test is based on inference for the marginal mixture distribution of the HMM. In order to illustrate the additional difficulties due to the dependence structure of the HMM, they show how to test general regular hypotheses on the marginal mixture of HMMs via a quasi‐modified likelihood ratio. They also discuss two applications.  相似文献   

16.
Abstract

The main goal of this paper is to study the estimation of the conditional hazard function of a scalar response variable Y given a hilbertian random variable X in functional single-index model. We construct an estimator of this nonparametric function and we study its asymptotic properties, under quasi-associated structure. Precisely, we establish the asymptotic normality of the constructed estimator. We carried out simulation experiments to examine the behavior of this asymptotic property over finite sample data.  相似文献   

17.
18.
This paper examines likelihood-ratio tests concerning the relationships among a fixed number of univariate normal means given a sample of normal observations whose population membership is uncertain. The asymptotic null distributions of likelihood-ratio test statistics are derived for a class of tests including hypotheses which place linear inequality constraints on the normal means. The use of such tests in the interval mapping of quantitative trait loci is addressed.  相似文献   

19.
This article presents a bivariate distribution for analyzing the failure data of mechanical and electrical components in presence of a forewarning or primer event whose occurrence denotes the inception of the failure mechanism that will cause the component failure after an additional random time. The characteristics of the proposed distribution are discussed and several point estimators of parameters are illustrated and compared, in case of complete sampling, via a large Monte Carlo simulation study. Confidence intervals based on asymptotic results are derived, as well as procedures are given for testing the independence between the occurrence time of the forewarning event and the additional time to failure. Numerical applications based on failure data of cable insulation specimens and of two-component parallel systems are illustrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号