首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a well-known method for selecting representative samples of populations, ranked set sampling (RSS) has been considered increasingly in recent years. This (RSS) method has proved to be more efficient than the usual simple random sampling (SRS) for estimating most of the population parameters. In order to have a more efficient estimate of the population mean, a new sampling scheme called as robust extreme double ranked set sampling (REDRSS) is introduced and investigated in this paper. A simulation study shows that using REDRSS scheme gives more efficient estimates of population mean with smaller variance than the usual SRS, RSS and most other sampling schemes based on RSS estimators in non-uniform (symmetric or non-symmetric) distributions.  相似文献   

2.
In this paper, we propose and evaluate the performance of different parametric and nonparametric estimators for the population coefficient of variation considering Ranked Set Sampling (RSS) under normal distribution. The performance of the proposed estimators was assessed based on the bias and relative efficiency provided by a Monte Carlo simulation study. An application in anthropometric measurements data from a human population is also presented. The results showed that the proposed estimators via RSS present an expressively lower mean squared error when compared to the usual estimator, obtained via Simple Random Sampling. Also, it was verified the superiority of the maximum likelihood estimator, given the necessary assumptions of normality and perfect ranking are met.  相似文献   

3.
Recently, a hybrid ranked set sampling (HRSS) scheme has been proposed in the literature. The HRSS scheme encompasses several existing ranked set sampling (RSS) schemes, and it is a cost-effective alternative to the classical RSS and double RSS schemes. In this paper, we propose an improved estimator for estimating the cumulative distribution function (CDF) using HRSS. It is shown, both theoretically and numerically, that the CDF estimator under HRSS scheme is unbiased and its variance is always less than the variance of the CDF estimator with simple random sampling (SRS). An unbiased estimator of the variance of CDF estimator using HRSS is also derived. Using Monte Carlo simulations, we also study the performances of the proposed and existing CDF estimators under both perfect and imperfect rankings. It turns out that the proposed CDF estimator is by far a superior alternative to the existing CDF estimators with SRS, RSS and L-RSS schemes. For a practical application, a real data set is considered on the bilirubin level of babies in neonatal intensive care.  相似文献   

4.
Ranked set sampling (RSS) design as a cost-effective sampling is a powerful tool in situations where measuring the variable of interest is costly and time-consuming; however, ranking information about sampling units can be obtained easily through inexpensive and easy to measure characteristics at little or no cost. In this paper, we study RSS data for analysis of an ordinal population. First, we compare the problem of non-representative extreme samples under RSS and commonly-used simple random sampling. Using RSS data with tie information, we propose non-parametric and maximum likelihood estimators for population parameters. Through extensive numerical studies, we investigate the effect of various factors including ranking ability, tie generating mechanisms, the number of categories and population setting on the performance of the estimators. Finally, we apply the proposed methods to the bone disorder data to estimate the proportions of patients with osteopenia and osteoporosis status.  相似文献   

5.
Neoteric ranked set sampling (NRSS) is a recently developed sampling plan, derived from the well-known ranked set sampling (RSS) scheme. It has already been proved that NRSS provides more efficient estimators for population mean and variance compared to RSS and other sampling designs based on ranked sets. In this work, we propose and evaluate the performance of some two-stage sampling designs based on NRSS. Five different sampling schemes are proposed. Through an extensive Monte Carlo simulation study, we verified that all proposed sampling designs outperform RSS, NRSS, and the original double RSS design, producing estimators for the population mean with a lower mean square error. Furthermore, as with NRSS, two-stage NRSS estimators present some bias for asymmetric distributions. We complement the study with a discussion on the relative performance of the proposed estimators. Moreover, an additional simulation based on data of the diameter and height of pine trees is presented.  相似文献   

6.
ABSTRACT

In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and ODRSS (BLUEs-ODRSS) are compared with the BLUEs based on ordered simple random sampling (OSRS), ranked set sampling (RSS), and ordered RSS (ORSS) schemes. These estimators are compared in terms of relative efficiency (RE), RE of determinant (RED), and RE of trace (RET). It is found that the BLUEs-ODRSS are uniformly better than the BLUEs based on OSRS, RSS, ORSS, and DRSS schemes. We also compare the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS), and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUEs, we calculate REs and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a non normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs.  相似文献   

7.
Abstract

In this article, we propose the best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) for the unknown parameters of location-scale family of distributions based on double-ranked set sampling (DRSS) using perfect and imperfect rankings. These estimators are then compared with the BLUEs and BLIEs based on ranked set sampling (RSS). It is shown that under perfect ranking, the proposed estimators are uniformly better than the BLUEs and BLIEs obtained via RSS. We also propose the best linear unbiased quantile (BLUQ) and the best linear invariant quantile (BLIQ) estimators for normal distribution under DRSS. It is observed that the proposed quantile estimators are more efficient than the BLUQ and BLIQ estimators based on RSS for both perfect and imperfect orderings.  相似文献   

8.
The minimum variance unbiased estimators (MVUEs) of the parameters for various distributions are extensively studied under ranked set sampling (RSS). However, the results in existing literatures are only locally MVUEs, i.e. the MVUE in a class of some unbiased estimators is obtained. In this paper, the global MVUE of the parameter in a truncated parameter family is obtained, that is to say, it is the MVUE in the class of all unbiased estimators. Firstly we find the optimal RSS according to the character of a truncated parameter family, i.e. arrange RSS based on complete and sufficient statistics of independent and identically distributed samples. Then under this RSS, the global MVUE of the parameter in a truncated parameter family is found. Numerical simulations for some usual distributions in this family fully support the result from the above two-step optimizations. A real data set is used for illustration.  相似文献   

9.
In surveys of natural resources in agriculture, ecology, fisheries, forestry, environmental management, etc., cost-effective sampling methods are of major concern. In this paper, we propose a two-stage cluster sampling (TSCS) in integration with the hybrid ranked set sampling (HRSS)—named TSCS-HRSS—in the second stage of sampling for estimating the population mean. The TSCS-HRSS scheme encompasses several existing ranked set sampling (RSS) schemes and may help in selecting a smaller number of units to rank. It is shown both theoretically and numerically that the TSCS-HRSS provides an unbiased estimator of the population mean and it is more precise than the mean estimators based on TSCS with SRS and RSS schemes. An unbiased estimator of the variance of the proposed mean estimator is also derived. A similar trend is observed when studying the impact of imperfect rankings on the performance of the TSCS-HRSS based mean estimator.  相似文献   

10.
The main focus of agricultural, ecological and environmental studies is to develop well designed, cost-effective and efficient sampling designs. Ranked set sampling (RSS) is one method that leads to accomplish such objectives by incorporating expert knowledge to its advantage. In this paper, we propose an efficient sampling scheme, named mixed RSS (MxRSS), for estimation of the population mean and median. The MxRSS scheme is a suitable mixture of both simple random sampling (SRS) and RSS schemes. The MxRSS scheme provides an unbiased estimator of the population mean, and its variance is always less than the variance of sample mean based on SRS. For both symmetric and asymmetric populations, the mean and median estimators based on SRS, partial RSS (PRSS) and MxRSS schemes are compared. It turns out that the mean and median estimates under MxRSS scheme are more precise than those based on SRS scheme. Moreover, when estimating the mean of symmetric and some asymmetric populations, the mean estimates under MxRSS scheme are found to be more efficient than the mean estimates with PRSS scheme. An application to real data is also provided to illustrate the implementation of the proposed sampling scheme.  相似文献   

11.
Ranked-set sampling (RSS) and judgment post-stratification (JPS) use ranking information to obtain more efficient inference than is possible using simple random sampling. Both methods were developed with subjective, judgment-based rankings in mind, but the idea of ranking using a covariate has received a lot of attention. We provide evidence here that when rankings are done using a covariate, the standard RSS and JPS mean estimators no longer make efficient use of the available information. We first show that when rankings are done using a covariate, the standard nonparametric mean estimators in JPS and unbalanced RSS are inadmissible under squared error loss. We then show that when rankings are done using a covariate, nonparametric regression techniques yield mean estimators that tend to be significantly more efficient than the standard RSS and JPS mean estimators. We conclude that the standard estimators are best reserved for settings where only subjective, judgment-based rankings are available.  相似文献   

12.
We propose kernel density estimators based on prebinned data. We use generalized binning schemes based on the quantiles points of a certain auxiliary distribution function. Therein the uniform distribution corresponds to usual binning. The statistical accuracy of the resulting kernel estimators is studied, i.e. we derive mean squared error results for the closeness of these estimators to both the true function and the kernel estimator based on the original data set. Our results show the influence of the choice of the auxiliary density on the binned kernel estimators and they reveal that non-uniform binning can be worthwhile.  相似文献   

13.
In RSS, the variance of observations in each ranked set plays an important role in finding an optimal design for unbalanced RSS and in inferring the population mean. The empirical estimator (i.e., the sample variance in a given ranked set) is most commonly used for estimating the variance in the literature. However, the empirical estimator does not use the information in the entire data over different ranked sets. Further, it is highly variable when the sample size is not large enough, as is typical in RSS applications. In this paper, we propose a plug-in estimator for the variance of each set, which is more efficient than the empirical one. The estimator uses a result in order statistics which characterizes the cumulative distribution function (CDF) of the rth order statistics as a function of the population CDF. We analytically prove the asymptotic normality of the proposed estimator. We further apply it to estimate the standard error of the RSS mean estimator. Both our simulation and empirical study show that our estimators consistently outperform existing methods.  相似文献   

14.
Ranked set sampling (RSS) is an advanced sampling method which is very effective for estimating mean of the population when exact measurement of observation is difficult and/or expensive. Balanced Groups RSS (BGRSS) is one of the modification of RSS where only the lowest, the median and the largest ranked units are taken into account. Although BGRSS is advantageous and useful for some specific cases, it has strict restrictions regarding the set size which could be problematic for sampling plans. In this study, we make an improvement on BGRSS and propose a new design called Partial Groups RSS which offers a more flexible sampling plan providing the independence of the set size and sample size. Partial Groups RSS also has a cost advantage over BGRSS. We construct a Monte Carlo simulation study comparing the performance of the mean estimators of the proposed sampling design and BGRSS according to their sampling costs and mean squared errors for various type of distributions. In addition, we give a biometric data application for investigating the efficiency of Partial Groups RSS in real life applications.  相似文献   

15.
The ranked set sampling (RSS) method as suggested by McIntyre (1952) may be modified to come up with new sampling methods that can be made more efficient than the usual RSS method. Two such modifications, namely extreme and median ranked set sampling methods, are considered in this study. These two methods are generally easier to use in the field and less prone to problems resulting from errors in ranking. Two regression-type estimators based on extreme ranked set sampling (ERSS) and median ranked set sampling (MRSS) for estimating the population mean of the variable of interest are considered in this study and compared with the regression-type estimators based on RSS suggested by Yu & Lam (1997). It turned out that when the variable of interest and the concomitant variable jointly followed a bivariate normal distribution, the regression-type estimator of the population mean based on ERSS dominates all other estimators considered.  相似文献   

16.
The aim of this paper is twofold. First we discuss the maximum likelihood estimators of the unknown parameters of a two-parameter Birnbaum–Saunders distribution when the data are progressively Type-II censored. The maximum likelihood estimators are obtained using the EM algorithm by exploiting the property that the Birnbaum–Saunders distribution can be expressed as an equal mixture of an inverse Gaussian distribution and its reciprocal. From the proposed EM algorithm, the observed information matrix can be obtained quite easily, which can be used to construct the asymptotic confidence intervals. We perform the analysis of two real and one simulated data sets for illustrative purposes, and the performances are quite satisfactory. We further propose the use of different criteria to compare two different sampling schemes, and then find the optimal sampling scheme for a given criterion. It is observed that finding the optimal censoring scheme is a discrete optimization problem, and it is quite a computer intensive process. We examine one sub-optimal censoring scheme by restricting the choice of censoring schemes to one-step censoring schemes as suggested by Balakrishnan (2007), which can be obtained quite easily. We compare the performances of the sub-optimal censoring schemes with the optimal ones, and observe that the loss of information is quite insignificant.  相似文献   

17.
ABSTRACT

In this paper, we use the idea of order statistics from independent and non-identically distributed random variables to propose ordered partially ordered judgment subset sampling (OPOJSS) and then develop optimal linear parametric inferences. The best linear unbiased and invariant estimators of the location and scale parameters of a location-scale family are developed based on OPOJSS. It is shown that, despite the presence or absence of ranking errors, the proposed estimators with OPOJSS are uniformly better than the existing estimators with simple random sampling (SRS), ranked set sampling (RSS), ordered RSS (ORSS) and partially ordered judgment subset sampling (POJSS). Moreover, we also derive the best linear unbiased estimators (BLUEs) of the unknown parameters of the simple linear regression model with replicated observations using POJSS and OPOJSS. It is found that the BLUEs with OPOJSS are more precise than the BLUEs based on SRS, RSS, ORSS and POJSS.  相似文献   

18.
In the current paper, the estimation of the shape and location parameters α and c, respectively, of the Pareto distribution will be considered in cases when c is known and when both are unknown. Simple random sampling (SRS) and ranked set sampling (RSS) will be used, and several traditional and ad hoc estimators will be considered. In addition, the estimators of α, when c is known using an RSS version based on the order statistic that maximizes the Fisher information for a fixed set size, will be considered. These estimators will be compared in terms of their biases and mean square errors. The estimators based on RSS can be real competitors against those based on SRS.  相似文献   

19.
Ratio and regression estimators for a mean are considered in conjunction with certain sequential sampling schemes. An auxiliary variable is assumed present and both fixed-cost and fixed- width confidence interval stopping rules are investigated. The asymptotic distributions of the estimators are derived as well as optimal probabilities pertinent to the schemes. Comparisons are made with results of certain double sampling procedures. Estimation of the ratio of two means is also considered and the results of a Monte Carlo simulation are included.  相似文献   

20.
We study the use of ranked set sampling (RSS) with binary outcomes in cluster-randomized designs (CRDs), where a generalized linear mixed model (GLMM) is used to model the hierarchical data structure involved. Under the GLMM-based framework, we propose three different approaches to estimate the treatment effect, including the nonparametric (NP), maximum likelihood (ML) and pseudo likelihood (PL) estimators. We investigate their asymptotic properties and examine their finite-sample performance via simulation. Based on these three RSS estimators, we further develop procedures for testing the existence of the treatment effect. We examine the power and size of our proposed RSS tests and compare them with existing tests based on simple random sampling (SRS). All the proposed RSS estimation and test methods are illustrated with two data examples, one for rare events and the other for non-extreme events. Throughout our investigations, we also consider the possible effect of imperfect ranking. Among the proposed methods, we provide recommendations on whether to use RSS rather than SRS with binary outcomes in CRDs and, if yes, when to use which RSS method. The Canadian Journal of Statistics 48: 342–365; 2020 © 2019 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号