首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Abstract

In this paper we introduce continuous tree mixture model that is the mixture of undirected graphical models with tree structured graphs and is considered as multivariate analysis with a non parametric approach. We estimate its parameters, the component edge sets and mixture proportions through regularized maximum likalihood procedure. Our new algorithm, which uses expectation maximization algorithm and the modified version of Kruskal algorithm, simultaneosly estimates and prunes the mixture component trees. Simulation studies indicate this method performs better than the alternative Gaussian graphical mixture model. The proposed method is also applied to water-level data set and is compared with the results of Gaussian mixture model.  相似文献   

3.
Summary.  When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof.  相似文献   

4.
Abstract.  CG-regressions are multivariate regression models for mixed continuous and discrete responses that result from conditioning in the class of conditional Gaussian (CG) models. Their conditional independence structure can be read off a marked graph. The property of collapsibility, in this context, means that the multivariate CG-regression can be decomposed into lower dimensional regressions that are still CG and are consistent with the corresponding subgraphs. We derive conditions for this property that can easily be checked on the graph, and indicate computational advantages of this kind of collapsibility. Further, a simple graphical condition is given for checking whether a decomposition into univariate regressions is possible.  相似文献   

5.
We propose a new type of multivariate statistical model that permits non‐Gaussian distributions as well as the inclusion of conditional independence assumptions specified by a directed acyclic graph. These models feature a specific factorisation of the likelihood that is based on pair‐copula constructions and hence involves only univariate distributions and bivariate copulas, of which some may be conditional. We demonstrate maximum‐likelihood estimation of the parameters of such models and compare them to various competing models from the literature. A simulation study investigates the effects of model misspecification and highlights the need for non‐Gaussian conditional independence models. The proposed methods are finally applied to modeling financial return data. The Canadian Journal of Statistics 40: 86–109; 2012 © 2012 Statistical Society of Canada  相似文献   

6.
The graphical lasso has now become a useful tool to estimate high-dimensional Gaussian graphical models, but its practical applications suffer from the problem of choosing regularization parameters in a data-dependent way. In this article, we propose a model-averaged method for estimating sparse inverse covariance matrices for Gaussian graphical models. We consider the graphical lasso regularization path as the model space for Bayesian model averaging and use Markov chain Monte Carlo techniques for the regularization path point selection. Numerical performance of our method is investigated using both simulated and real datasets, in comparison with some state-of-art model selection procedures.  相似文献   

7.
Abstract

Covariance estimation and selection for multivariate datasets in a high-dimensional regime is a fundamental problem in modern statistics. Gaussian graphical models are a popular class of models used for this purpose. Current Bayesian methods for inverse covariance matrix estimation under Gaussian graphical models require the underlying graph and hence the ordering of variables to be known. However, in practice, such information on the true underlying model is often unavailable. We therefore propose a novel permutation-based Bayesian approach to tackle the unknown variable ordering issue. In particular, we utilize multiple maximum a posteriori estimates under the DAG-Wishart prior for each permutation, and subsequently construct the final estimate of the inverse covariance matrix. The proposed estimator has smaller variability and yields order-invariant property. We establish posterior convergence rates under mild assumptions and illustrate that our method outperforms existing approaches in estimating the inverse covariance matrices via simulation studies.  相似文献   

8.
9.
We present an objective Bayes method for covariance selection in Gaussian multivariate regression models having a sparse regression and covariance structure, the latter being Markov with respect to a directed acyclic graph (DAG). Our procedure can be easily complemented with a variable selection step, so that variable and graphical model selection can be performed jointly. In this way, we offer a solution to a problem of growing importance especially in the area of genetical genomics (eQTL analysis). The input of our method is a single default prior, essentially involving no subjective elicitation, while its output is a closed form marginal likelihood for every covariate‐adjusted DAG model, which is constant over each class of Markov equivalent DAGs; our procedure thus naturally encompasses covariate‐adjusted decomposable graphical models. In realistic experimental studies, our method is highly competitive, especially when the number of responses is large relative to the sample size.  相似文献   

10.
ABSTRACT

The goal of this article is to introduce singular Gaussian graphical models and their conditional independence properties. In fact, we extend the concept of Gaussian Markov Random Field to the case of a multivariate normally distributed vector with a singular covariance matrix. We construct, then, the associated graph’s structure from the covariance matrix’s pseudo-inverse on the basis of a characterization of the pairwise conditional independence. The proposed approach can also be used when the covariance matrix is ill-conditioned, through projecting data on a smaller subspace. In this case, our method ensures numerical stability and consistency of the constructed graph and significantly reduces the inference problem’s complexity. These aspects are illustrated using numerical experiments.  相似文献   

11.
The graphical belief model is a versatile tool for modeling complex systems. The graphical structure and its implicit probabilistic and logical independence conditions define the relationships between many of the variables of the problem. The graphical model is composed of a collection of local models:models of both interactions between the variables sharing a common hyperedge and information about single variables. These local models can be constructed with either probability distributions or belief functions. This paper takes the latter approach and describes simple models for univariate and multivariate belief functions. The examples are taken from both reliability and knowledge representation problems.  相似文献   

12.
A class of log‐linear models, referred to as labelled graphical models (LGMs), is introduced for multinomial distributions. These models generalize graphical models (GMs) by employing partial conditional independence restrictions which are valid only in subsets of an outcome space. Theoretical results concerning model identifiability, decomposability and estimation are derived. A decision theoretical framework and a search algorithm for the identification of plausible models are described. Real data sets are used to illustrate that LGMs may provide a simpler interpretation of a dependence structure than GMs.  相似文献   

13.
This paper concerns the geometric treatment of graphical models using Bayes linear methods. We introduce Bayes linear separation as a second order generalised conditional independence relation, and Bayes linear graphical models are constructed using this property. A system of interpretive and diagnostic shadings are given, which summarise the analysis over the associated moral graph. Principles of local computation are outlined for the graphical models, and an algorithm for implementing such computation over the junction tree is described. The approach is illustrated with two examples. The first concerns sales forecasting using a multivariate dynamic linear model. The second concerns inference for the error variance matrices of the model for sales, and illustrates the generality of our geometric approach by treating the matrices directly as random objects. The examples are implemented using a freely available set of object-oriented programming tools for Bayes linear local computation and graphical diagnostic display.  相似文献   

14.
Abstract. For certain classes of hierarchical models, it is easy to derive an expression for the joint moment‐generating function (MGF) of data, whereas the joint probability density has an intractable form which typically involves an integral. The most important example is the class of linear models with non‐Gaussian latent variables. Parameters in the model can be estimated by approximate maximum likelihood, using a saddlepoint‐type approximation to invert the MGF. We focus on modelling heavy‐tailed latent variables, and suggest a family of mixture distributions that behaves well under the saddlepoint approximation (SPA). It is shown that the well‐known normalization issue renders the ordinary SPA useless in the present context. As a solution we extend the non‐Gaussian leading term SPA to a multivariate setting, and introduce a general rule for choosing the leading term density. The approach is applied to mixed‐effects regression, time‐series models and stochastic networks and it is shown that the modified SPA is very accurate.  相似文献   

15.
16.
Multivariate inverse Gaussian distribution proposed by Minami [2003. A multivariate extension of inverse Gaussian distribution derived from inverse relationship. Commun. Statist. Theory Methods 32(12), 2285–2304] was derived through multivariate inverse relationship with multivariate Gaussian distributions and characterized as the distribution of the location at a certain stopping time of a multivariate Brownian motion. In this paper, we show that the multivariate inverse Gaussian distribution is also a limiting distribution of multivariate Lagrange distributions, which is a family of waiting time distributions, under certain conditions.  相似文献   

17.
This paper considers a hierarchical Bayesian analysis of regression models using a class of Gaussian scale mixtures. This class provides a robust alternative to the common use of the Gaussian distribution as a prior distribution in particular for estimating the regression function subject to uncertainty about the constraint. For this purpose, we use a family of rectangular screened multivariate scale mixtures of Gaussian distribution as a prior for the regression function, which is flexible enough to reflect the degrees of uncertainty about the functional constraint. Specifically, we propose a hierarchical Bayesian regression model for the constrained regression function with uncertainty on the basis of three stages of a prior hierarchy with Gaussian scale mixtures, referred to as a hierarchical screened scale mixture of Gaussian regression models (HSMGRM). We describe distributional properties of HSMGRM and an efficient Markov chain Monte Carlo algorithm for posterior inference, and apply the proposed model to real applications with constrained regression models subject to uncertainty.  相似文献   

18.
Abstract.  The local specification of priors in non-decomposable graphical models does not necessarily yield a proper joint prior for all the parameters of the model. Using results concerning general exponential families with cuts, we derive specific results for the multivariate Gamma distribution (conjugate prior for Poisson counts) and the Wishart distribution (conjugate prior for Gaussian models). These results link the existence of a locally specified joint prior to the solvability of a related marginal problem over the cliques of the graph.  相似文献   

19.
Graphical models for skew-normal variates   总被引:2,自引:0,他引:2  
This paper explores the usefulness of the multivariate skew-normal distribution in the context of graphical models. A slight extension of the family recently discussed by Azzalini & Dalla Valle (1996 ) and Azzalini & Capitanio (1999 ) is described, the main motivation being the additional property of closure under conditioning. After considerations of the main probabilistic features, the focus of the paper is on the construction of conditional independence graphs for skew-normal variables. Necessary and sufficient conditions for conditional independence are stated, and the admissible structures of a graph under restriction on univariate marginal distribution are studied. Finally, parameter estimation is considered. It is shown how the factorization of the likelihood function according to a graph can be rearranged in order to obtain a parameter based factorization.  相似文献   

20.
The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号