首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The randomized response technique (RRT) is an important tool that is commonly used to protect a respondent’s privacy and avoid biased answers in surveys on sensitive issues. In this work, we consider the joint use of the unrelated-question RRT of Greenberg et al. (J Am Stat Assoc 64:520–539, 1969) and the related-question RRT of Warner (J Am Stat Assoc 60:63–69, 1965) dealing with the issue of an innocuous question from the unrelated-question RRT. Unlike the existing unrelated-question RRT of Greenberg et al. (1969), the approach can provide more information on the innocuous question by using the related-question RRT of Warner (1965) to effectively improve the efficiency of the maximum likelihood estimator of Scheers and Dayton (J Am Stat Assoc 83:969–974, 1988). We can then estimate the prevalence of the sensitive characteristic by using logistic regression. In this new design, we propose the transformation method and provide large-sample properties. From the case of two survey studies, an extramarital relationship study and a cable TV study, we develop the joint conditional likelihood method. As part of this research, we conduct a simulation study of the relative efficiencies of the proposed methods. Furthermore, we use the two survey studies to compare the analysis results under different scenarios.  相似文献   

2.
In this paper, we consider the estimation of the probability density function and the cumulative distribution function of the inverse Rayleigh distribution. In this regard, the following estimators are considered: uniformly minimum variance unbiased estimator, maximum likelihood (ML) estimator, percentile estimator, least squares estimator and weighted least squares estimator. To do so, analytical expressions are derived for the mean integrated squared error. As the result of simulation studies and real data applications indicate, when the sample size is not very small the ML estimator performs better than the others.  相似文献   

3.
Social desirability bias (SDB) is the tendency in respondents to answer questions untruthfully in the hope of giving good impression to others. SDB occurs when the survey question is highly sensitive or personal. The Randomized Response Technique (RRT) is one of several methods to get around SDB in face-to-face interview surveys involving sensitive questions. In this article, we first review some of the existing binary response RRT models. Then, we propose a new model—Two-Stage Binary Optional RRT model. Much of the focus is on estimating π, the prevalence of sensitive characteristic, and ω, the sensitivity level of the underlying question. We discuss the asymptotic properties of our estimators and present some simulation results. It turns out that the proposed Two-Stage Binary Optional RRT model is more effective than the Optional RRT model proposed by Gupta (2001).  相似文献   

4.
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we examine estimation of Aalen's nonparametric regression coefficients based on doubly censored data. We propose two estimation techniques. The first type of estimators, including ordinary least squared (OLS) estimator and weighted least squared (WLS) estimators, are obtained using martingale arguments. The second type of estimator, the maximum likelihood estimator (MLE), is obtained via expectation-maximization (EM) algorithms that treat the survival times of left censored observations as missing. Asymptotic properties, including the uniform consistency and weak convergence, are established for the MLE. Simulation results demonstrate that the MLE is more efficient than the OLS and WLS estimators.  相似文献   

5.
The present paper considers the weighted mixed regression estimation of the coefficient vector in a linear regression model with stochastic linear restrictions binding the regression coefficients. We introduce a new two-parameter-weighted mixed estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [1] and the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [2]. This new estimator is a general estimator which includes the weighted mixed estimator, the TPE and the restricted two-parameter estimator (RTPE) proposed by Özkale and Kaç?ranlar [2] as special cases. Furthermore, we compare the TPWME with the weighted mixed estimator and the TPE with respect to the matrix mean square error criterion. A numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters to illustrate some of the theoretical results.  相似文献   

6.
This article addresses the various properties and different methods of estimation of the unknown parameter of length and area-biased Maxwell distributions. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of length and area-biased Maxwell distributions (such as moments, moment-generating function (mgf), hazard rate function, mean residual lifetime function, residual lifetime function, reversed residual life function, conditional moments and conditional mgf, stochastic ordering, and measures of uncertainty) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimator, moments estimator, least-square and weighted least-square estimators, maximum product of spacings estimator and compare them using extensive numerical simulations. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using inverted gamma prior for the scale parameter. Furthermore, Bayes estimators and their respective posterior risks are computed and compared using Markov chain Monte Carlo (MCMC) algorithm. Also, bootstrap confidence intervals using frequentist approaches are provided to compare with Bayes credible intervals. Finally, a real dataset has been analyzed for illustrative purposes.  相似文献   

7.
This article addresses two methods of estimation of the probability density function (PDF) and cumulative distribution function (CDF) for the Lindley distribution. Following estimation methods are considered: uniformly minimum variance unbiased estimator (UMVUE) and maximum likelihood estimator (MLE). Since the Lindley distribution is more flexible than the exponential distribution, the same estimators have been found out for the exponential distribution and compared. Monte Carlo simulations and a real data analysis are performed to compare the performances of the proposed methods of estimation.  相似文献   

8.
Much of the small‐area estimation literature focuses on population totals and means. However, users of survey data are often interested in the finite‐population distribution of a survey variable and in the measures (e.g. medians, quartiles, percentiles) that characterize the shape of this distribution at the small‐area level. In this paper we propose a model‐based direct estimator (MBDE, Chandra and Chambers) of the small‐area distribution function. The MBDE is defined as a weighted sum of sample data from the area of interest, with weights derived from the calibrated spline‐based estimate of the finite‐population distribution function introduced by Harms and Duchesne, under an appropriately specified regression model with random area effects. We also discuss the mean squared error estimation of the MBDE. Monte Carlo simulations based on both simulated and real data sets show that the proposed MBDE and its associated mean squared error estimator perform well when compared with alternative estimators of the area‐specific finite‐population distribution function.  相似文献   

9.
The exponentiated Gumbel model has been shown to be useful in climate modeling including global warming problem, flood frequency analysis, offshore modeling, rainfall modeling, and wind speed modeling. Here, we consider estimation of the probability density function (PDF) and the cumulative distribution function (CDF) of the exponentiated Gumbel distribution. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least-square (LS) estimator, and weighted least-square (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others.  相似文献   

10.
The Weibull extension model is a useful extension of the Weibull distribution, allowing for bathtub shaped hazard rates among other things. Here, we consider estimation of the PDF and the CDF of the Weibull extension model. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least squares (LS) estimator, and weighted least squares (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others.  相似文献   

11.
目前,数量特征敏感问题调查主要采用随机化策略,该策略需使用随机化装置,从而需要在现场实施。提出一种问卷设计技术,该技术用无关问题替代随机化装置,因而不需要调查者亲临现场,不受调查规模及调查单位聚散的限制,使得调查更加方便、实用、经济。给出了相应的无偏估计量,推算出估计量的方差和方差的估计量并举例说明。  相似文献   

12.
Quantitle regression (QR) is a popular approach to estimate functional relations between variables for all portions of a probability distribution. Parameter estimation in QR with missing data is one of the most challenging issues in statistics. Regression quantiles can be substantially biased when observations are subject to missingness. We study several inverse probability weighting (IPW) estimators for parameters in QR when covariates or responses are subject to missing not at random. Maximum likelihood and semiparametric likelihood methods are employed to estimate the respondent probability function. To achieve nice efficiency properties, we develop an empirical likelihood (EL) approach to QR with the auxiliary information from the calibration constraints. The proposed methods are less sensitive to misspecified missing mechanisms. Asymptotic properties of the proposed IPW estimators are shown under general settings. The efficiency gain of EL-based IPW estimator is quantified theoretically. Simulation studies and a data set on the work limitation of injured workers from Canada are used to illustrated our proposed methodologies.  相似文献   

13.
The problem of estimation of a parameter of interest in the presence of a nuisance parameter, which is either location or scale, is considered. Three estimators are taken into account: usual maximum likelihood (ML) estimator, maximum integrated likelihood estimator and the bias-corrected ML estimator. General results on comparison of these estimators w.r.t. the second-order risk based on the mean-squared error are obtained. Possible improvements of basic estimators via the notion of admissibility and methodology given in Ghosh and Sinha [A necessary and sufficient condition for second order admissibility with applications to Berkson's bioassay problem. Ann Stat. 1981;9(6):1334–1338] are considered. In the recent paper by Tanaka et al. [On improved estimation of a gamma shape parameter. Statistics. 2014; doi:10.1080/02331888.2014.915842], this problem was considered for estimating the shape parameter of gamma distribution. Here, we perform more accurate comparison of estimators for this case as well as for some other cases.  相似文献   

14.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

15.
We propose a novel approach to estimation, where a set of estimators of a parameter is combined into a weighted average to produce the final estimator. The weights are chosen to be proportional to the likelihood evaluated at the estimators. We investigate the method for a set of estimators obtained by using the maximum likelihood principle applied to each individual observation. The method can be viewed as a Bayesian approach with a data-driven prior distribution. We provide several examples illustrating the new method and argue for its consistency, asymptotic normality, and efficiency. We also conduct simulation studies to assess the performance of the estimators. This straightforward methodology produces consistent estimators comparable with those obtained by the maximum likelihood method. The method also approximates the distribution of the estimator through the “posterior” distribution.  相似文献   

16.
It is common for linear regression models that the error variances are not the same for all observations and there are some high leverage data points. In such situations, the available literature advocates the use of heteroscedasticity consistent covariance matrix estimators (HCCME) for the testing of regression coefficients. Primarily, such estimators are based on the residuals derived from the ordinary least squares (OLS) estimator that itself can be seriously inefficient in the presence of heteroscedasticity. To get efficient estimation, many efficient estimators, namely the adaptive estimators are available but their performance has not been evaluated yet when the problem of heteroscedasticity is accompanied with the presence of high leverage data. In this article, the presence of high leverage data is taken into account to evaluate the performance of the adaptive estimator in terms of efficiency. Furthermore, our numerical work also evaluates the performance of the robust standard errors based on this efficient estimator in terms of interval estimation and null rejection rate (NRR).  相似文献   

17.
We consider the variance estimation of the weighted likelihood estimator (WLE) under two‐phase stratified sampling without replacement. Asymptotic variance of the WLE in many semiparametric models contains unknown functions or does not have a closed form. The standard method of the inverse probability weighted (IPW) sample variances of an estimated influence function is then not available in these models. To address this issue, we develop the variance estimation procedure for the WLE in a general semiparametric model. The phase I variance is estimated by taking a numerical derivative of the IPW log likelihood. The phase II variance is estimated based on the bootstrap for a stratified sample in a finite population. Despite a theoretical difficulty of dependent observations due to sampling without replacement, we establish the (bootstrap) consistency of our estimators. Finite sample properties of our method are illustrated in a simulation study.  相似文献   

18.
In this paper, attention is focused on estimation of the location parameter in the double exponential case using a weighted linear combination of the sample median and pairs of order statistics, with symmetric distance to both sides from the sample median. Minimizing with respect to weights and distances we get smaller asymptotic variance in the second order. If the number of pairs is taken as infinite and the distances as null we attain the least asymptotic variance in this class of estimators. The Pitman estimator is also noted. Similarly improved estimators are scanned over their probability of concentration to investigate its bound. Numerical comparison of the estimators is shown.  相似文献   

19.
Abstract

In this article, we propose a new improved and efficient biased estimation method which is a modified restricted Liu-type estimator satisfying some sub-space linear restrictions in the binary logistic regression model. We study the properties of the new estimator under the mean squared error matrix criterion and our results show that under certain conditions the new estimator is superior to some other estimators. Moreover, a Monte Carlo simulation study is conducted to show the performance of the new estimator in the simulated mean squared error and predictive median squared errors sense. Finally, a real application is considered.  相似文献   

20.
In this paper, we consider the problem of estimating the scale parameter of the inverse Rayleigh distribution based on general progressively Type-II censored samples and progressively Type-II censored samples. The pivotal quantity method is used to derive the estimator of the scale parameter. Besides, considering that the maximum likelihood estimator is tough to obtain for this distribution, we derive an explicit estimator of the scale parameter by approximating the likelihood equation with Taylor expansion. The interval estimation is also studied based on pivotal inference. Then we conduct Monte Carlo simulations and compare the performance of different estimators. We demonstrate that the pivotal inference is simpler and more effective. The further application of the pivotal quantity method is also discussed theoretically. Finally, two real data sets are analyzed using our methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号