首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

2.
A new three-parameter distribution with decreasing, increasing, bathtub-shaped and upside-down bathtub-shaped hazard rate function is proposed. The new distribution encompasses some previously known distributions as special cases. Basic mathematical properties of the new distribution (including the moment-generating function, moments, order statistics properties, Rényi entropy and stress–strength parameter) are derived. Its parameters are estimated by the method of maximum likelihood. An application is illustrated using a real data set.  相似文献   

3.
The turning point of a hazard rate function is useful in assessing the hazard in the useful life phase and helps to determine and plan appropriate burn-in, maintenance, and repair policies and strategies. For many bathtub-shaped distributions, the turning point is unique, and the hazard varies little in the useful life phase. We investigate the performance of an empirical estimator for the turning point in the case of the modified Weibull distribution, a bathtub-shaped generalization of the Weibull distribution, that has been found to be useful in reliability engineering and other areas concerned with life-time data. We illustrate the theory by means of an example, and also conduct a simulation study to assess the performance of the estimator in practice.  相似文献   

4.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

5.
A new three-parameter distribution with decreasing, increasing, and bathtub-shaped hazard rates obtained by compounding geometric, power series, and exponential distributions is introduced. It includes some well-known distributions as particular cases. Various mathematical properties of the new distribution as well as details of the maximum likelihood estimation and a sensitivity analysis for its parameters are presented. Finally, two real data applications are presented.  相似文献   

6.
We introduce a new class of flexible hazard rate distributions which have constant, increasing, decreasing, and bathtub-shaped hazard function. This class of distributions obtained by compounding the power and exponential hazard rate functions, which is called the power-exponential hazard rate distribution and contains several important lifetime distributions. We obtain some distributional properties of the new family of distributions. The estimation of parameters is obtained by using the maximum likelihood and the Bayesian methods under squared error, linear-exponential, and Stein’s loss functions. Also, approximate confidence intervals and HPD credible intervals of parameters are presented. An application to real dataset is provided to show that the new hazard rate distribution has a better fit than the other existing hazard rate distributions and some four-parameter distributions. Finally , to compare the performance of proposed estimators and confidence intervals, an extensive Monte Carlo simulation study is conducted.  相似文献   

7.
We consider a linear combination of two logarithms of cumulative hazard functions and propose a general class of flexible Weibull distribution functions which includes some well-known modified Weibull distributions (MWDs). We suggest a very flexible Weibull distribution, which belongs to the class, and show that its hazard function is monotone, bathtub-shaped, modified bathtub-shaped, or even upside-down bathtub-shaped. We also discuss the methods of least square estimation and maximum likelihood estimation of the unknown parameters. We take two illustrated examples to compare the suggested distribution with some current MWDs, and show that the suggested distribution shows good performances.  相似文献   

8.
A new four-parameter distribution is introduced. It appears to be a distribution allowing for and only allowing for monotonically increasing, bathtub-shaped and upside down bathtub-shaped hazard rates. It contains as particular cases many of the known lifetime distributions. Some mathematical properties of the new distribution, including estimation procedures by the method of maximum likelihood are derived. Some simulations are run to assess the performance of the maximum-likelihood estimators. Finally, the flexibility of the new distribution is illustrated using a real data set.  相似文献   

9.
In this paper we introduce a new three-parameter exponential-type distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have constant, decreasing, increasing, upside-down bathtub and bathtub-shaped hazard rate functions. It also generalizes some well-known distributions. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. Additionally, we formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time to this event follows the proposed distribution. Maximum likelihood estimation of the model parameters of the new cure rate survival model is discussed for complete sample and censored sample. Two applications to real data are provided to illustrate the flexibility of the new model in practice.  相似文献   

10.
We introduce a new family of distributions based on a one-parameter distribution exhibiting bathtub-shaped hazard rates. We study the mathematical properties of the family and estimate its parameters by the method of maximum likelihood. Finally, the usefulness of the family is illustrated using a real dataset.  相似文献   

11.
According to Ross, any system can be represented either as a series arrangement of parallel structures or as a parallel arrangement of series structures. Motivated by this, we propose new three-parameter lifetime distributions by compounding geometric, power series, and exponential distributions. The distributions can allow for decreasing, increasing, bathtub-shaped, and upside down bathtub-shaped hazard rates. A mathematical treatment of the new distributions is provided including expressions for their density functions, Shannon and Rényi entropies, mean residual life functions, hazard rate functions, quantiles, and moments. The method of maximum likelihood is used for estimating parameters. Five of the new distributions are studied in detail. Finally, two illustrative data examples and a sensitivity analysis are presented.  相似文献   

12.
We introduce a new class of distributions called the Weibull Marshall–Olkin-G family. We obtain some of its mathematical properties. The special models of this family provide bathtub-shaped, decreasing-increasing, increasing-decreasing-increasing, decreasing-increasing-decreasing, monotone, unimodal and bimodal hazard functions. The maximum likelihood method is adopted for estimating the model parameters. We assess the performance of the maximum likelihood estimators by means of two simulation studies. We also propose a new family of linear regression models for censored and uncensored data. The flexibility and importance of the proposed models are illustrated by means of three real data sets.  相似文献   

13.
In this paper, a discrete counterpart of the general class of continuous beta-G distributions is introduced. A discrete analog of the beta generalized exponential distribution of Barreto-Souza et al. [2], as an important special case of the proposed class, is studied. This new distribution contains some previously known discrete distributions as well as two new models. The hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Some distributional and moment properties of the new distribution as well as its order statistics are discussed. Estimation of the parameters is illustrated using the maximum likelihood method and, finally, the model with a real data set is examined.  相似文献   

14.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

15.
A number of models have been proposed in the literature to model data reflecting bathtub-shaped hazard rate functions. Mixture distributions provide the obvious choice for modelling such data sets but these contain too many parameters and hamper the accuracy of the inferential procedures particularly when the data are meagre. Recently, a few distributions have been proposed which are simply generalizations of the two-parameter Weibull model and are capable of producing bathtub behaviour of the hazard rate function. The Weibull extension and the modified Weibull models are two such families. This study focuses on comparing these two distributions for data sets exhibiting bathtub shape of the hazard rate. Bayesian tools are preferred due to their wide range of applicability in various nested and non-nested model comparison problems. Real data illustrations are provided so that a particular model can be recommended based on various tools of model comparison discussed in the paper.  相似文献   

16.
ABSTRACT

In this article, a two-parameter generalized inverse Lindley distribution capable of modeling a upside-down bathtub-shaped hazard rate function is introduced. Some statistical properties of proposed distribution are explicitly derived here. The method of maximum likelihood, least square, and maximum product spacings are used for estimating the unknown model parameters and also compared through the simulation study. The approximate confidence intervals, based on a normal and a log-normal approximation, are also computed. Two algorithms are proposed for generating a random sample from the proposed distribution. A real data set is modeled to illustrate its applicability, and it is shown that our distribution fits much better than some other existing inverse distributions.  相似文献   

17.
The bathtub-shaped failure rate function has been used for modeling the life spans of a number of electronic and mechanical products, as well as for modeling the life spans of humans, especially when some of the data are censored. This article addresses robust methods for the estimation of unknown parameters in a two-parameter distribution with a bathtub-shaped failure rate function based on progressive Type-II censored samples. Here, a class of flexible priors is considered by using the hierarchical structure of a conjugate prior distribution, and corresponding posterior distributions are obtained in a closed-form. Then, based on the square error loss function, Bayes estimators of unknown parameters are derived, which depend on hyperparameters as parameters of the conjugate prior. In order to eliminate the hyperparameters, hierarchical Bayesian estimation methods are proposed, and these proposed estimators are compared to one another based on the mean squared error, through Monte Carlo simulations for various progressively Type-II censoring schemes. Finally, a real dataset is presented for the purpose of illustration.  相似文献   

18.
We consider the problem of estimating unknown parameters, reliability function and hazard function of a two parameter bathtub-shaped distribution on the basis of progressive type-II censored sample. The maximum likelihood estimators and Bayes estimators are derived for two unknown parameters, reliability function and hazard function. The Bayes estimators are obtained against squared error, LINEX and entropy loss functions. Also, using the Lindley approximation method we have obtained approximate Bayes estimators against these loss functions. Some numerical comparisons are made among various proposed estimators in terms of their mean square error values and some specific recommendations are given. Finally, two data sets are analyzed to illustrate the proposed methods.  相似文献   

19.
In this paper, we propose an extension of the Gompertz-Makeham distribution. This distribution is called the transmuted Gompertz-Makeham (TGM). The new model which can handle bathtub-shaped, increasing, increasing-constant and constant hazard rate functions. This property makes TGM is useful in survival analysis. Various statistical and reliability measures of the model are obtained, including hazard rate function, moments, moment generating function (mgf), quantile function, random number generating, skewness, kurtosis, conditional moments, mean deviations, Bonferroni curve, Lorenz curve, Gini index, mean inactivity time, mean residual lifetime and stochastic ordering; we also obtain the density of the ith order statistic. Estimation of the model parameters is justified by the method of maximum likelihood. An application to real data demonstrates that the TGM distribution can provides a better fit than some other very well known distributions.  相似文献   

20.
In this paper, we study the relationships between the weighted distributions and the parent distributions in the context of Lorenz curve, Lorenz ordering and inequality measures. These relationships depend on the nature of the weight functions and give rise to interesting connections. The properties of weighted distributions for general weight functions are also investigated. It is shown how to derive and to determine characterizations related to Lorenz curve and other inequality measures for the cases weight functions are increasing or decreasing. Some of the results are applied for special cases of the weighted distributions. We represent the reliability measures of weighted distributions by the inequality measures to obtain some results. Length-biased and equilibrium distributions have been discussed as weighted distributions in the reliability context by concentration curves. We also review and extend the problem of stochastic orderings and aging classes under weighting. Finally, the relationships between the weighted distribution and transformations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号