首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

2.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

3.
Let X 1, X 2,…, X n be independent exponential random variables with X i having failure rate λ i for i = 1,…, n. Denote by D i:n  = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…, n, where X 0:n ≡ 0. It is shown that if λ n+1 ≤ [≥] λ k for k = 1,…, n then D n:n  ≤ lr D n+1:n+1 and D 1:n  ≤ lr D 2:n+1 [D 2:n+1 ≤ lr D 2:n ], and that if λ i  + λ j  ≥ λ k for all distinct i,j, and k then D n?1:n  ≤ lr D n:n and D n:n+1 ≤ lr D n:n , where ≤ lr denotes the likelihood ratio order. We also prove that D 1:n  ≤ lr D 2:n for n ≥ 2 and D 2:3 ≤ lr D 3:3 for all λ i 's.  相似文献   

4.
Let X1, …, Xn be independent random variables with XiEWG(α, β, λi, pi), i = 1, …, n, and Y1, …, Yn be another set of independent random variables with YiEWG(α, β, γi, qi), i = 1, …, n. The results established here are developed in two directions. First, under conditions p1 = ??? = pn = q1 = ??? = qn = p, and based on the majorization and p-larger orders between the vectors of scale parameters, we establish the usual stochastic and reversed hazard rate orders between the series and parallel systems. Next, for the case λ1 = ??? = λn = γ1 = ??? = γn = λ, we obtain some results concerning the reversed hazard rate and hazard rate orders between series and parallel systems based on the weak submajorization between the vectors of (p1, …, pn) and (q1, …, qn). The results established here can be used to find various bounds for some important aging characteristics of these systems, and moreover extend some well-known results in the literature.  相似文献   

5.
Let X1,…,X7 be i.i.d. random variables with a common continuous distribution F, Two parameters, μ(F) = P(X1 < X5 and X1+X4 < X2+X3) and λ(F) = P(X1+X4 < X2+X3 and X1+X7 < X5+X6), which appear in the moments of some rank statistics have been studied by several authors. It is shown that the existing lower bound, 3/10 ≤ μ(F) can be improved to 3/10 < μ(F) and that no further improvement is possible. It is also shown that the existing upper bounds μ(F) ≤ (21/2+6)/24 ≈ 0.30893 and λ(F) ≤ 7/24 ≈ 0.29167 can be improved to [14+(2/3)1/2]/48 ≈ 0.30868 and {7 ? [1 ? (2/3)1/2]2/4}/24 ≈ 0.29132.  相似文献   

6.
Consider the randomly weighted sums Sm(θ) = ∑mi = 1θiXi, 1 ? m ? n, and their maxima Mn(θ) = max?1 ? m ? nSm(θ), where Xi, 1 ? i ? n, are real-valued and dependent according to a wide type of dependence structure, and θi, 1 ? i ? n, are non negative and arbitrarily dependent, but independent of Xi, 1 ? i ? n. Under some mild conditions on the right tails of the weights θi, 1 ? i ? n, we establish some asymptotic equivalence formulas for the tail probabilities of Sn(θ) and Mn(θ) in the case where Xi, 1 ? i ? n, are dominatedly varying, long-tailed and subexponential distributions, respectively.  相似文献   

7.
Let X2: n and Y2: m be the second order statistics from n independent exponential variables with hazards λ1, …, λn, and an independent exponential sample of size m with hazard change to λ, respectively. When m ? n, we obtain necessary and sufficient conditions for comparing X2: n and Y2: m in mean residual life, dispersive, hazard rate, and likelihood ratio orderings based on some inequalities between λi’s and λ. The established results show how one can compare an (n ? 1)-out-of-n system consisting of heterogeneous components with exponential lifetimes with any (m ? 1)-out-of-m system consisting of homogeneous components with exponential lifetimes.  相似文献   

8.
9.
Let X1, X2,… be a sequence of independent random variables with distribution functions F1, where 1 ≤ in, and for each n ≥ 1 let X1,n ≤… ≤ Xn,n denote the order statistics of the first n random variables. Under suitable hypotheses about the F1, we characterize the limit distribution functions H(x) for which P(Xk,n ? anx + bn) → H(x), where an > 0 and bn are real constants. We consider the cases where κ = κ(n) satisfies √n {κ(n)/n — λ} → 0 and √n {κ(n)/n — λ} → ∞ separately.  相似文献   

10.
Suppose (X, Y) has a Downton's bivariate exponential distribution with correlation ρ. For a random sample of size n from (X, Y), let X r:n be the rth X-order statistic and Y [r:n] be its concomitant. We investigate estimators of ρ when all the parameters are unknown and the available data is an incomplete bivariate sample made up of (i) all the Y-values and the ranks of associated X-values, i.e. (i, Y [i:n]), 1≤in, and (ii) a Type II right-censored bivariate sample consisting of (X i:n , Y [i:n]), 1≤ir<n. In both setups, we use simulation to examine the bias and mean square errors of several estimators of ρ and obtain their estimated relative efficiencies. The preferred estimator under (i) is a function of the sample correlation of (Y i:n , Y [i:n]) values, and under (ii), a method of moments estimator involving the regression function is preferred.  相似文献   

11.
12.
Let (X i , Y i ), i = 1, 2,…, n be independent and identically distributed random variables from some continuous bivariate distribution. If X (r) denotes the rth-order statistic, then the Y's associated with X (r) denoted by Y [r] is called the concomitant of the rth-order statistic. In this article, we derive an analytical expression of Shannon entropy for concomitants of order statistics in FGM family. Applying this expression for some well-known distributions of this family, we obtain the exact form of Shannon entropy, some of the information properties, and entropy bounds for concomitants of order statistics. Some comparisons are also made between the entropy of order statistics X (r) and the entropy of its concomitants Y [r]. In this family, we show that the mutual information between X (r) and Y [r], and Kullback–Leibler distance among the concomitants of order statistics are all distribution-free. Also, we compare the Pearson correlation coefficient between X (r) and Y [r] with the mutual information of (X (r), Y [r]) for the copula model of FGM family.  相似文献   

13.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

14.
The probability density function (pdf) of a two parameter exponential distribution is given by f(x; p, s?) =s?-1 exp {-(x - ρ)/s?} for x≥ρ and 0 elsewhere, where 0 < ρ < ∞ and 0 < s?∞. Suppose we have k independent random samples where the ith sample is drawn from the ith population having the pdf f(x; ρi, s?i), 0 < ρi < ∞, 0 < s?i < s?i < and f(x; ρ, s?) is as given above. Let Xi1 < Xi2 <… < Xiri denote the first ri order statistics in a random sample of size ni, drawn from the ith population with pdf f(x; ρi, s?i), i = 1, 2,…, k. In this paper we show that the well known tests of hypotheses about the parameters ρi, s?i, i = 1, 2,…, k based on the above observations are asymptotically optimal in the sense of Bahadur efficiency. Our results are similar to those for normal distributions.  相似文献   

15.
ABSTRACT

Let (Xi, Yi), i = 1, …, n be a pair where the first coordinate Xi represents the lifetime of a component, and the second coordinate Yi denotes the utility of the component during its lifetime. Then the random variable Y[r: n] which is known to be the concomitant of the rth order statistic defines the utility of the component which has the rth smallest lifetime. In this paper, we present a dynamic analysis for an n component system under the above-mentioned concomitant setup.  相似文献   

16.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

17.
X1, X2, …, Xk are k(k ? 2) uniform populations which each Xi follows U(0, θi). This note shows the test statistic for the null hypothesis H0: θ1 = θ2 = ??? = θk by using the order statistics.  相似文献   

18.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

19.
Progressively Type-II censored conditionally N-ordered statistics (PCCOS-N) arising from iid random vectors Xi = (X1i, X2i, …, Xip), i = 1, 2…, n, were investigated by Bairamov (2006 Bairamov, I. (2006). Progressive Type II censored order statistics for multivariate observations. J. Mult. Anal. 97:797809.[Crossref], [Web of Science ®] [Google Scholar]), with respect to the magnitudes of N(Xi), i = 1, 2, …, n, where N( · ) is a p-variate measurable function defined on the support set of X1 satisfying certain regularity conditions and N(Xi) denotes the lifetime of the random vector Xi, i = 1, …, n. Under the PCCOS-N sampling scheme, n independent units are placed on a life-test and after the ith failure, Ri (i = 1, …, m) of the surviving units are removed at random from the remaining observations. In this article, we consider PCCOS-N arising from a vector with identical as well as non identical dependent components, jointly distributed according to a unified elliptically contoured copula (PCCOSDUECC-N). Results established here contain the previous results as particular cases. Illustrative examples and simulation studies show that PCCOSDUECC-N enables us to analyze the lifetime of several systems, including repairable systems and systems with standby components, more efficiently than PCCOS-N.  相似文献   

20.
Let X1:n ≤ X2:n ≤···≤ Xn:n denote the order statistics of a sample of n independent random variables X1, X2,…, Xn, all identically distributed as some X. It is shown that if X has a log-convex [log-concave] density function, then the general spacing vector (Xk1:n, Xk2:n ? Xk1:n,…, Xkr:n ? Xkr?1:n) is MTP2 [S-MRR2] whenever 1 ≤ k1 < k2 <···< kr ≤ n and 1 ≤ r ≤ n. Multivariate likelihood ratio ordering of such general spacing vectors corresponding to two random samples is also considered. These extend some of the results in the literature for usual spacing vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号