首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Janardan (1973) introduced the generalized Polya Eggenberger family of distributions (GPED) as a limiting distribution of the generalized Markov-Polya distribution (GMPD). Janardan and Rao (1982) gave a number of characterizing properties of the generalized Markov-Polya and generalized Polya Eggenberger distributions. Here, the GPED family characterized by four parameters, is formally defined and studied. The probability generating function, its moments, and certain recurrence relations with the moments are provided. The Lagrangian Katz family of distributions (Consul and Famoye (1996)) is shown to be a sub-class of the family of GPED (or GPED 1 ) as it is called in this paper). A generalized Polya Eggenberger distribution of the second kind (GPED 2 ) is also introduced and some of it's properties are given. Recurrence relations for the probabilities of GPED 1 and GPED 2 are given. A number of other structural and characteristic properties of the GPED 1 are provided, from which the properties of Lagrangian Katz family follow. The parameters of GMPD 1 are estimated by the method of moments and the maximum likelihood method. An application is provided.  相似文献   

2.
We introduce a new class of continuous distributions called the generalized transmuted-G family which extends the transmuted-G class. We provide six special models of the new family. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of three applications to real data sets.  相似文献   

3.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

4.
A new four-parameter class of generalized Lindley (GL) distribution called the beta-generalized Lindley (BGL) distribution is proposed. This class of distributions contains the beta-Lindley, GL and Lindley distributions as special cases. Expansion of the density of the BGL distribution is obtained. The properties of these distributions, including hazard function, reverse hazard function, monotonicity property, shapes, moments, reliability, mean deviations, Bonferroni and Lorenz curves are derived. Measures of uncertainty such as Renyi entropy and s-entropy as well as Fisher information are presented. Method of maximum likelihood is used to estimate the parameters of the BGL and related distributions. Finally, real data examples are discussed to illustrate the applicability of this class of models.  相似文献   

5.
ABSTRACT

The properties of a family of distributions generalizing the secant hyperbolic are developed. This family consists of symmetric distributions, with kurtosis ranging from 1.8 to infinity, and includes the logistic as a special case, the uniform as a limiting case, and closely approximates the normal and Student's t-distributions with corresponding kurtosis. A significant difference between this family and Student's t is that for any member of the generalized secant hyperbolic family, all moments are finite. Further, technical difficulties associated with evaluating moments of Student's t (especially for fractional degrees of freedom) are not present with this family. The properties of the maximum likelihood and modified maximum likelihood estimates of the location and scale parameters for complete samples are considered. Examples illustrate the methods developed in this work.  相似文献   

6.
In this paper, a new family of continuous distributions called the exponentiated transmuted-G family is proposed which extends the transmuted-G family defined by Shaw and Buckley (2007). Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, and order statistics are derived. Some special models of the new family are provided. The maximum likelihood is used for estimating the model parameters. We provide the simulation results to assess the performance of the proposed model. The usefulness and flexibility of the new family is illustrated using real data.  相似文献   

7.
We introduce and study general mathematical properties of a new generator of continuous distributions with three extra parameters called the new generalized odd log-logistic family of distributions. The proposed family contains several important classes discussed in the literature as submodels such as the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, entropy measures, and order statistics, which hold for any baseline model, are presented. We also present certain characterization of the proposed distribution and derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behavior of the maximum likelihood estimator via simulation. The importance of the new family is illustrated by means of two real data sets. These applications indicate that the new family can provide better fits than other well-known classes of distributions. The beauty and importance of the new family lies in its ability to model real data.  相似文献   

8.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

9.
Abstract

Statistical distributions are very useful in describing and predicting real world phenomena. In many applied areas there is a clear need for the extended forms of the well-known distributions. Generally, the new distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important.

In this article, we proposed an extended generalized Gompertz (EGGo) family of EGGo. Certain statistical properties of EGGo family including distribution shapes, hazard function, skewness, limit behavior, moments and order statistics are discussed. The flexibility of this family is assessed by its application to real data sets and comparison with other competing distributions. The maximum likelihood equations for estimating the parameters based on real data are given. The performances of the estimators such as maximum likelihood estimators, least squares estimators, weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators are discussed. The likelihood ratio test is derived to illustrate that the EGGo distribution is better than other nested models in fitting data set or not. We use R software for simulation in order to perform applications and test the validity of this model.  相似文献   

10.
In this article, we proposed a new three-parameter probability distribution, called Topp–Leone normal, for modelling increasing failure rate data. The distribution is obtained by using Topp–Leone-X family of distributions with normal as a baseline model. The basic properties including moments, quantile function, stochastic ordering and order statistics are derived here. The estimation of unknown parameters is approached by the method of maximum likelihood, least squares, weighted least squares and maximum product spacings. An extensive simulation study is carried out to compare the long-run performance of the estimators. Applicability of the distribution is illustrated by means of three real data analyses over existing distributions.  相似文献   

11.
Cordeiro and de Castro proposed a new family of generalized distributions based on the Kumaraswamy distribution (denoted as Kw-G). Nadarajah et al. showed that the density function of the new family of distributions can be expressed as a linear combination of the density of exponentiated family of distributions. They derived some properties of Kw-G distributions and discussed estimation of parameters using the maximum likelihood (ML) method. Cheng and Amin and Ranneby introduced a new method of estimating parameters based on Kullback–Leibler divergence (the maximum spacing (MSP) method). In this article, the estimates of parameters of Kw-G distributions are obtained using the MSP method. For some special Kw-G distributions, the new estimators are compared with ML estimators. It is shown by simulations and a real data application that MSP estimators have better properties than ML estimators.  相似文献   

12.
This paper introduces a new class of skew distributions by extending the alpha skew normal distribution proposed by Elal-Olivero [Elal-Olivero, D. Alpha-skew-normal distribution. Proyecciones. 2010;29:224–240]. Statistical properties of the new family are studied in details. In particular, explicit expressions for the moments and the shape parameters including the skewness and the kurtosis coefficients and the moment generating function are derived. The problem of estimating parameters on the basis of a random sample coming from the new class of distribution is considered. To examine the performance of the obtained estimators, a Monte Carlo simulation study is conducted. Flexibility and usefulness of the proposed family of distributions are illustrated by analysing three real data sets.  相似文献   

13.
For any continuous baseline G distribution [G.M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883–898], proposed a new generalized distribution (denoted here with the prefix ‘Kw-G’ (Kumaraswamy-G)) with two extra positive parameters. They studied some of its mathematical properties and presented special sub-models. We derive a simple representation for the Kw-G density function as a linear combination of exponentiated-G distributions. Some new distributions are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), pp. 155–161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279–285] and Kw-Flexible Weibull [M. Bebbington, C.D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007), pp. 719–726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes, moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Rényi entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the estimation of the parameters by maximum likelihood. We provide two applications to real data sets and discuss a bivariate extension of the Kw-G distribution.  相似文献   

14.
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.  相似文献   

15.
We present a new generalized family of skew two-piece skew-elliptical (GSTPSE) models and derive some its statistical properties. It is shown that the new family of distribution may be written as a mixture of generalized skew elliptical distributions. Also, a new representation theorem for a special case of GSTPSE-distribution is given. Next, we will focus on t kernel density and prove that it is a scale mixture of the generalized skew two-piece skew normal distributions. An explicit expression for the central moments as well as a recurrence relations for its cumulative distribution function and density are obtained. Since, this special case is a uni-/bimodal distribution, a sufficient condition for each cases is given. A real data set on heights of Australian females athletes is analysed. Finally, some concluding remarks and open problems are discussed.  相似文献   

16.
Emrah Altun 《Statistics》2019,53(2):364-386
In this paper, we introduce a new distribution, called generalized Gudermannian (GG) distribution, and its skew extension for GARCH models in modelling daily Value-at-Risk (VaR). Basic structural properties of the proposed distribution are obtained including probability density and cumulative distribution functions, moments, and stochastic representation. The maximum likelihood method is used to estimate unknown parameters of the proposed model and finite sample performance of maximum likelihood estimates are evaluated by means of Monte-Carlo simulation study. The real data application on Nikkei 225 index is given to demonstrate the performance of GARCH model specified under skew extension of GG innovation distribution against normal, Student's-t, skew normal and generalized error and skew generalized error distributions in terms of the accuracy of VaR forecasts. The empirical results show that the GARCH model with GG innovation distribution produces the most accurate VaR forecasts for all confidence levels.  相似文献   

17.
Skew normal distribution is an alternative distribution to the normal distribution to accommodate asymmetry. Since then extensive studies have been done on applying Azzalini’s skewness mechanism to other well-known distributions, such as skew-t distribution, which is more flexible and can better accommodate long tailed data than the skew normal one. The Kumaraswamy generalized distribution (Kw ? F) is another new class of distribution which is capable of fitting skewed data that can not be fitted well by existing distributions. Such a distribution has been widely studied and various versions of generalization of this distribution family have been introduced. In this article, we introduce a new generalization of the skew-t distribution based on the Kumaraswamy generalized distribution. The new class of distribution, which we call the Kumaraswamy skew-t (KwST) has the ability of fitting skewed, long, and heavy-tailed data and is more flexible than the skew-t distribution as it contains the skew-t distribution as a special case. Related properties of this distribution family such as mathematical properties, moments, and order statistics are discussed. The proposed distribution is applied to a real dataset to illustrate the estimation procedure.  相似文献   

18.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] introduced the generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous model called the gamma-linear failure rate (LFR) distribution, which extends the LFR model, is proposed and studied. Various structural properties of the new distribution are derived, including some explicit expressions for ordinary and incomplete moments, generating function, probability-weighted moments, mean deviations and Rényi and Shannon entropies. We estimate the model parameters by maximum likelihood and obtain the observed information matrix. The new model is modified to cope with possible long-term survivors in lifetime data. We illustrate the usefulness of the proposed model by means of two applications to real data.  相似文献   

19.
A new three-parameter distribution with decreasing, increasing, bathtub-shaped and upside-down bathtub-shaped hazard rate function is proposed. The new distribution encompasses some previously known distributions as special cases. Basic mathematical properties of the new distribution (including the moment-generating function, moments, order statistics properties, Rényi entropy and stress–strength parameter) are derived. Its parameters are estimated by the method of maximum likelihood. An application is illustrated using a real data set.  相似文献   

20.
We introduce a new family of distributions by adding a parameter to the Marshall–Olkin family of distributions. Some properties of the new family of distributions are derived. A particular case of the family, a three-parameter generalization of the exponential distribution, is given special attention. The shape properties, moments, distributions of the order statistics, entropies and estimation procedures are derived. An application to a real data set is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号