首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
We consider the fitting of a Bayesian model to grouped data in which observations are assumed normally distributed around group means that are themselves normally distributed, and consider several alternatives for accommodating the possibility of heteroscedasticity within the data. We consider the case where the underlying distribution of the variances is unknown, and investigate several candidate prior distributions for those variances. In each case, the parameters of the candidate priors (the hyperparameters) are themselves given uninformative priors (hyperpriors). The most mathematically convenient model for the group variances is to assign them inverse gamma distributed priors, the inverse gamma distribution being the conjugate prior distribution for the unknown variance of a normal population. We demonstrate that for a wide class of underlying distributions of the group variances, a model that assigns the variances an inverse gamma-distributed prior displays favorable goodness-of-fit properties relative to other candidate priors, and hence may be used as standard for modeling such data. This allows us to take advantage of the elegant mathematical property of prior conjugacy in a wide variety of contexts without compromising model fitness. We test our findings on nine real world publicly available datasets from different domains, and on a wide range of artificially generated datasets.  相似文献   

2.
Abstract

Through simulation and regression, we study the alternative distribution of the likelihood ratio test in which the null hypothesis postulates that the data are from a normal distribution after a restricted Box–Cox transformation and the alternative hypothesis postulates that they are from a mixture of two normals after a restricted (possibly different) Box–Cox transformation. The number of observations in the sample is called N. The standardized distance between components (after transformation) is D = (μ2 ? μ1)/σ, where μ1 and μ2 are the component means and σ2 is their common variance. One component contains the fraction π of observed, and the other 1 ? π. The simulation results demonstrate a dependence of power on the mixing proportion, with power decreasing as the mixing proportion differs from 0.5. The alternative distribution appears to be a non-central chi-squared with approximately 2.48 + 10N ?0.75 degrees of freedom and non-centrality parameter 0.174N(D ? 1.4)2 × [π(1 ? π)]. At least 900 observations are needed to have power 95% for a 5% test when D = 2. For fixed values of D, power, and significance level, substantially more observations are necessary when π ≥ 0.90 or π ≤ 0.10. We give the estimated powers for the alternatives studied and a table of sample sizes needed for 50%, 80%, 90%, and 95% power.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号