首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
In this article, we investigate the limitations of traditional quantile function estimators and introduce a new class of quantile function estimators, namely, the semi-parametric tail-extrapolated quantile estimators, which has excellent performance for estimating the extreme tails with finite sample sizes. The smoothed bootstrap and direct density estimation via the characteristic function methods are developed for the estimation of confidence intervals. Through a comprehensive simulation study to compare the confidence interval estimations of various quantile estimators, we discuss the preferred quantile estimator in conjunction with the confidence interval estimation method to use under different circumstances. Data examples are given to illustrate the superiority of the semi-parametric tail-extrapolated quantile estimators. The new class of quantile estimators is obtained by slight modification of traditional quantile estimators, and therefore, should be specifically appealing to researchers in estimating the extreme tails.  相似文献   

2.
In this paper, we consider the estimation problem of multiple conditional quantile functions with right censored survival data. To account for censoring in estimating a quantile function, weighted quantile regression (WQR) has been developed by using inverse-censoring-probability weights. However, the estimated quantile functions from the WQR often cross each other and consequently violate the basic properties of quantiles. To avoid quantile crossing, we propose non-crossing weighted multiple quantile regression (NWQR), which estimates multiple conditional quantile functions simultaneously. We further propose the adaptive sup-norm regularized NWQR (ANWQR) to perform simultaneous estimation and variable selection. The large sample properties of the NWQR and ANWQR estimators are established under certain regularity conditions. The proposed methods are evaluated through simulation studies and analysis of a real data set.  相似文献   

3.
Kai B  Li R  Zou H 《Annals of statistics》2011,39(1):305-332
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the parametric regression coefficients. To achieve nice efficiency properties, we further develop a semiparametric composite quantile regression procedure. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the estimators achieve the best convergence rate. Moreover, we show that the proposed method is much more efficient than the least-squares-based method for many non-normal errors and that it only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than 13.6% for estimating parametric components. To achieve sparsity with high-dimensional covariates, we propose adaptive penalization methods for variable selection in the semiparametric varying-coefficient partially linear model and prove that the methods possess the oracle property. Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-carotene level data.  相似文献   

4.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

5.
Least-squares and quantile regressions are method of moments techniques that are typically used in isolation. A leading example where efficiency may be gained by combining least-squares and quantile regressions is one where some information on the error quantiles is available but the error distribution cannot be fully specified. This estimation problem may be cast in terms of solving an over-determined estimating equation (EE) system for which the generalized method of moments (GMM) and empirical likelihood (EL) are approaches of recognized importance. The major difficulty with implementing these techniques here is that the EEs associated with the quantiles are non-differentiable. In this paper, we develop a kernel-based smoothing technique for non-smooth EEs, and derive the asymptotic properties of the GMM and maximum smoothed EL (MSEL) estimators based on the smoothed EEs. Via a simulation study, we investigate the finite sample properties of the GMM and MSEL estimators that combine least-squares and quantile moment relationships. Applications to real datasets are also considered.  相似文献   

6.
In this article, we apply the empirical likelihood technique to propose a new class of quantile estimators in the presence of some auxiliary information under negatively associated samples. It is shown that the proposed quantile estimators are asymptotically normally distributed with smaller asymptotic variances than those of the usual quantile estimators. It is also shown that blocking technique is an useful tool in estimating asymptotic variance under negatively associated samples, which makes it possible to construct normal approximation based confidence intervals for quantiles.  相似文献   

7.
Estimators for quantiles based on linear combinations of order statistics have been proposed by Harrell and Davis(1982) and kaigh and Lachenbruch (1982). Both estimators have been demonstrated to be at least as efficient for small sample point estimation as an ordinary sample quantile estimator based on one or two order statistics: Distribution-free confidence intervals for quantiles can be constructed using either of the two approaches. By means of a simulation study, these confidence intervals have been compared with several other methods of constructing confidence intervals for quantiles in small samples. For the median, the Kaigh and Lachenbruch method performed fairly well. For other quantiles, no method performed better than the method which uses pairs of order statistics.  相似文献   

8.
9.
This paper considers two general ways dependent groups might be compared based on quantiles. The first compares the quantiles of the marginal distributions. The second focuses on the lower and upper quantiles of the usual difference scores. Methods for comparing quantiles have been derived that typically assume that sampling is from a continuous distribution. There are exceptions, but generally, when sampling from a discrete distribution where tied values are likely, extant methods can perform poorly, even with a large sample size. One reason is that extant methods for estimating the standard error can perform poorly. Another is that quantile estimators based on a single-order statistic, or a weighted average of two-order statistics, are not necessarily asymptotically normal. Our main result is that when using the Harrell–Davis estimator, good control over the Type I error probability can be achieved in simulations via a standard percentile bootstrap method, even when there are tied values, provided the sample sizes are not too small. In addition, the two methods considered here can have substantially higher power than alternative procedures. Using real data, we illustrate how quantile comparisons can be used to gain a deeper understanding of how groups differ.  相似文献   

10.
Lots of semi-parametric and nonparametric models are used to fit nonlinear time series data. They include partially linear time series models, nonparametric additive models, and semi-parametric single index models. In this article, we focus on fitting time series data by partially linear additive model. Combining the orthogonal series approximation and the adaptive sparse group LASSO regularization, we select the important variables between and within the groups simultaneously. Specially, we propose a two-step algorithm to obtain the grouped sparse estimators. Numerical studies show that the proposed method outperforms LASSO method in both fitting and forecasting. An empirical analysis is used to illustrate the methodology.  相似文献   

11.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

12.
The composite quantile regression (CQR for short) provides an efficient and robust estimation for regression coefficients. In this paper we introduce two adaptive CQR methods. We make two contributions to the quantile regression literature. The first is that, both adaptive estimators treat the quantile levels as realizations of a random variable. This is quite different from the classic CQR in which the quantile levels are typically equally spaced, or generally, are treated as fixed values. Because the asymptotic variances of the adaptive estimators depend upon the generic distribution of the quantile levels, it has the potential to enhance estimation efficiency of the classic CQR. We compare the asymptotic variance of the estimator obtained by the CQR with that obtained by quantile regressions at each single quantile level. The second contribution is that, in terms of relative efficiency, the two adaptive estimators can be asymptotically equivalent to the CQR method as long as we choose the generic distribution of the quantile levels properly. This observation is useful in that it allows to perform parallel distributed computing when the computational complexity issue arises for the CQR method. We compare the relative efficiency of the adaptive methods with respect to some existing approaches through comprehensive simulations and an application to a real-world problem.  相似文献   

13.
Quantile regression introduced by Koenker and Bassett (1978) produces a comprehensive picture of a response variable on predictors. In this paper, we propose a general semi-parametric model of which part of predictors are presented with a single-index, to model the relationship of conditional quantiles of the response on predictors. Special cases are single-index models, partially linear single-index models and varying coefficient single-index models. We propose the qOPG, a quantile regression version of outer-product gradient estimation method (OPG, Xia et al., 2002) to estimate the single-index. Large-sample properties, simulation results and a real-data analysis are provided to examine the performance of the qOPG.  相似文献   

14.
This paper develops a varying-coefficient approach to the estimation and testing of regression quantiles under randomly truncated data. In order to handle the truncated data, the random weights are introduced and the weighted quantile regression (WQR) estimators for nonparametric functions are proposed. To achieve nice efficiency properties, we further develop a weighted composite quantile regression (WCQR) estimation method for nonparametric functions in varying-coefficient models. The asymptotic properties both for the proposed WQR and WCQR estimators are established. In addition, we propose a novel bootstrap-based test procedure to test whether the nonparametric functions in varying-coefficient quantile models can be specified by some function forms. The performance of the proposed estimators and test procedure are investigated through simulation studies and a real data example.  相似文献   

15.
There is much literature on statistical inference for distribution under missing data, but surprisingly very little previous attention has been paid to missing data in the context of estimating distribution with auxiliary information. In this article, the auxiliary information with missing data is proposed. We use Zhou, Wan and Wang's method (2008) to mitigate the effects of missing data through a reformulation of the estimating equations, imputed through a semi-parametric procedure. Whence we can estimate distribution and the τth quantile of the distribution by taking auxiliary information into account. Asymptotic properties of the distribution estimator and corresponding sample quantile are derived and analyzed. The distribution estimators based on our method are found to significantly outperform the corresponding estimators without auxiliary information. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators.  相似文献   

16.
When estimating population quantiles via a random sample from an unknown continuous distribution function it is well known that a pair of order statistics may be used to set a confidence interval for any single desired, population quantile. In this paper the technique is generalized so that more than one pair of order statistics may be used to obtain simultaneous confidence intervals for the various quantiles that might be required. The generalization immediately extends to the problem of obtaining interval estimates for quantile intervals. Distributions of the ordered and unordered probability coverages of these confidence intervals are discussed as are the associated distributions of linear combinations of the coverages.  相似文献   

17.
We propose correcting for non-compliance in randomized trials by estimating the parameters of a class of semi-parametric failure time models, the rank preserving structural failure time models, using a class of rank estimators. These models are the structural or strong version of the “accelerated failure time model with time-dependent covariates” of Cox and Oakes (1984). In this paper we develop a large sample theory for these estimators, derive the optimal estimator within this class, and briefly consider the construction of “partially adaptive” estimators whose efficiency may approach that of the optimal estimator. We show that in the absence of censoring the optimal estimator attains the semiparametric efficiency bound for the model.  相似文献   

18.
The two parametric distribution functions appearing in the extreme-value theory – the generalized extreme-value distribution and the generalized Pareto distribution – have log-concave densities if the extreme-value index γ∈[?1, 0]. Replacing the order statistics in tail-index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density ? f n leads to novel smooth quantile and tail-index estimators. These new estimators aim at estimating the tail index especially in small samples. Acting as a smoother of the empirical distribution function, the log-concave distribution function estimator reduces estimation variability to a much greater extent than it introduces bias. As a consequence, Monte Carlo simulations demonstrate that the smoothed version of the estimators are well superior to their non-smoothed counterparts, in terms of mean-squared error.  相似文献   

19.
The small sample performance of least median of squares, reweighted least squares, least squares, least absolute deviations, and three partially adaptive estimators are compared using Monte Carlo simulations. Two data problems are addressed in the paper: (1) data generated from non-normal error distributions and (2) contaminated data. Breakdown plots are used to investigate the sensitivity of partially adaptive estimators to data contamination relative to RLS. One partially adaptive estimator performs especially well when the errors are skewed, while another partially adaptive estimator and RLS perform particularly well when the errors are extremely leptokur-totic. In comparison with RLS, partially adaptive estimators are only moderately effective in resisting data contamination; however, they outperform least squares and least absolute deviation estimators.  相似文献   

20.
We use semi-parametric efficiency theory to derive a class of estimators for the state occupation probabilities of the continuous-time irreversible illness-death model. We consider both the setting with and without additional baseline information available, where we impose no specific functional form on the intensity functions of the model. We show that any estimator in the class is asymptotically linear under suitable assumptions about the estimators of the intensity functions. In particular, the assumptions are weak enough to allow the use of data-adaptive methods, which is important for making the identifying assumption of coarsening at random plausible in realistic settings. We suggest a flexible method for estimating the transition intensity functions of the illness-death model based on penalized Poisson regression. We apply this method to estimate the nuisance parameters of an illness-death model in a simulation study and a real-world application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号