首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bivariate integer-valued moving average (BINMA) model is proposed. The BINMA model allows for both positive and nagative correlation between the counts. This model can be seen as an inverse of the conditional duration model in the sense that short durations in a time interval correspond to a large count and vice versa. The conditional mean, variance, and covariance of the BINMA model are given. Model extensions to include explanatory variables are suggested. Using the BINMA model for AstraZeneca and Ericsson B, it is found that there is positive correlation between the stock transactions series. Empirically, we find support for the use of long-lag bivariate moving average models for the two series.  相似文献   

2.
Bivariate integer-valued time series occur in many areas, such as finance, epidemiology, business etc. In this article, we present bivariate autoregressive integer-valued time-series models, based on the signed thinning operator. Compared to classical bivariate INAR models, the new processes have the advantage to allow for negative values for both the time series and the autocorrelation functions. Strict stationarity and ergodicity of the processes are established. The moments and the autocovariance functions are determined. The conditional least squares estimator of the model parameters is considered and the asymptotic properties of the obtained estimators are derived. An analysis of a real dataset from finance and a simulation study are carried out to assess the performance of the model.  相似文献   

3.
We present a bivariate regression model for count data that allows for positive as well as negative correlation of the response variables. The covariance structure is based on the Sarmanov distribution and consists of a product of generalised Poisson marginals and a factor that depends on particular functions of the response variables. The closed form of the probability function is derived by means of the moment-generating function. The model is applied to a large real dataset on health care demand. Its performance is compared with alternative models presented in the literature. We find that our model is significantly better than or at least equivalent to the benchmark models. It gives insights into influences on the variance of the response variables.  相似文献   

4.
A non-stationary integer-valued autoregressive model   总被引:1,自引:0,他引:1  
It is frequent to encounter a time series of counts which are small in value and show a trend having relatively large fluctuation. To handle such a non-stationary integer-valued time series with a large dispersion, we introduce a new process called integer-valued autoregressive process of order p with signed binomial thinning (INARS(p)). This INARS(p) uniquely exists and is stationary under the same stationary condition as in the AR(p) process. We provide the properties of the INARS(p) as well as the asymptotic normality of the estimates of the model parameters. This new process includes previous integer-valued autoregressive processes as special cases. To preserve integer-valued nature of the INARS(p) and to avoid difficulty in deriving the distributional properties of the forecasts, we propose a bootstrap approach for deriving forecasts and confidence intervals. We apply the INARS(p) to the frequency of new patients diagnosed with acquired immunodeficiency syndrome (AIDS) in Baltimore, Maryland, U.S. during the period of 108 months from January 1993 to December 2001.  相似文献   

5.
We propose a mixture integer-valued ARCH model for modeling integer-valued time series with overdispersion. The model consists of a mixture of K stationary or non-stationary integer-valued ARCH components. The advantages of the mixture model over the single-component model include the ability to handle multimodality and non-stationary components. The necessary and sufficient first- and second-order stationarity conditions, the necessary arbitrary-order stationarity conditions, and the autocorrelation function are derived. The estimation of parameters is done through an EM algorithm, and the model is selected by three information criterions, whose performances are studied via simulations. Finally, the model is applied to a real dataset.  相似文献   

6.
Time series of counts occur in many different contexts, the counts being usually of certain events or objects in specified time intervals. In this paper we introduce a model called parameter-driven state-space model to analyse integer-valued time series data. A key property of such model is that the distribution of the observed count data is independent, conditional on the latent process, although the observations are correlated marginally. Our simulation shows that the Monte Carlo Expectation Maximization (MCEM) algorithm and the particle method are useful for the parameter estimation of the proposed model. In the application to Malaysia dengue data, our model fits better when compared with several other models including that of Yang et al. (2015)  相似文献   

7.
The combined model accounts for different forms of extra-variability and has traditionally been applied in the likelihood framework, or in the Bayesian setting via Markov chain Monte Carlo. In this article, integrated nested Laplace approximation is investigated as an alternative estimation method for the combined model for count data, and compared with the former estimation techniques. Longitudinal, spatial, and multi-hierarchical data scenarios are investigated in three case studies as well as a simulation study. As a conclusion, integrated nested Laplace approximation provides fast and precise estimation, while avoiding convergence problems often seen when using Markov chain Monte Carlo.  相似文献   

8.
In many cases of modeling bivariate count data, the interest lies on studying the association rather than the marginal properties. We form a flexible regression copula-based model where covariates are used not only for the marginal but also for the copula parameters. Since copula measures the association, the use of covariates in its parameters allow for direct modeling of association. A real-data application related to transaction market basket data is used. Our goal is to refine and understand whether the association between the number of purchases of certain product categories depends on particular demographic customers’ characteristics. Such information is important for decision making for marketing purposes.  相似文献   

9.
In this article, a new mixed Poisson distribution is introduced. This new distribution is obtained by utilizing mixing process, with Poisson distribution as mixed distribution and Transmuted Exponential as mixing distribution. Distributional properties like unimodality, moments, over-dispersion, infinite divisibility are studied. Three methods viz. Method of moment, Method of moment and proportion, and Maximum-likelihood method are used for parameter estimation. Further, an actuarial application in context of aggregate claim distribution is presented. Finally, to show the applicability and superiority of proposed model, we discuss count data and count regression modeling and compare with some well established models.  相似文献   

10.
In this article, we conduct a Monte Carlo study to examine four balancing scores (BS1: propensity score, BS2: prognostic score, BS3: adjusted propensity score estimated by the estimated prognostic score, and BS4: adjusted propensity score estimated by the estimated prognostic score and other covariates) for adjusting bias in estimating the marginal and the conditional rate ratios of count data in observational studies. Simulation results show that BS1–BS4 are not much different in terms of estimating the marginal and the conditional rate ratios, however, choosing the appropriate matching algorithm is more important than selecting a balancing scores.  相似文献   

11.
In this research, we describe a nonparametric time-varying coefficient model for the analysis of panel count data. We extend the traditional panel count data models by incorporating B-splines estimates of time-varying coefficients. We show that the proposed model can be implemented using a nonparametric maximum pseudo-likelihood method. We further examine the theoretical properties of the estimators of model parameters. The operational characteristics of the proposed method are evaluated through a simulation study. For illustration, we analyse data from a study of childhood wheezing, and describe the time-varying effect of an inflammatory marker on the risk of wheezing.  相似文献   

12.
This article proposes a novel non-stationary BINMA time series model by extending two INMA processes where their innovation series follow the bivariate Poisson under time-varying moment assumptions. This article also demonstrates, through simulation studies, the use and superiority of the generalized quasi-likelihood (GQL) approach to estimate the regression effects, which is computationally less complicated as compared to conditional maximum likelihood estimation (CMLE) and the feasible generalized least squares (FGLS). The serial and bivariate dependence correlations are estimated by a robust method of moments.  相似文献   

13.
Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of chi2-type tests for independence between pairs of failure times after adjusting for covariates. A bivariate accelerated failure time model is proposed for the joint distribution of bivariate failure times while leaving the dependence structures for related failure times completely unspecified. Theoretical properties of the proposed tests are derived and variance estimates of the test statistics are obtained using a resampling technique. Simulation studies show that the proposed tests are appropriate for practical use. Two examples including the study of infection in catheters for patients on dialysis and the diabetic retinopathy study are also given to illustrate the methodology.  相似文献   

14.
Abstract: The authors address the problem of estimating an inter‐event distribution on the basis of count data. They derive a nonparametric maximum likelihood estimate of the inter‐event distribution utilizing the EM algorithm both in the case of an ordinary renewal process and in the case of an equilibrium renewal process. In the latter case, the iterative estimation procedure follows the basic scheme proposed by Vardi for estimating an inter‐event distribution on the basis of time‐interval data; it combines the outputs of the E‐step corresponding to the inter‐event distribution and to the length‐biased distribution. The authors also investigate a penalized likelihood approach to provide the proposed estimation procedure with regularization capabilities. They evaluate the practical estimation procedure using simulated count data and apply it to real count data representing the elongation of coffee‐tree leafy axes.  相似文献   

15.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

16.
Excess zeros are encountered in many empirical count data applications. We provide a new explanation of extra zeros, related to the underlying stochastic process that generates events. The process has two rates: a lower rate until the first event and a higher one thereafter. We derive the corresponding distribution of the number of events during a fixed period and extend it to account for observed and unobserved heterogeneity. An application to the socioeconomic determinants of the individual number of doctor visits in Germany illustrates the usefulness of the new approach.  相似文献   

17.
18.
Modeling cylindrical data, comprised of a linear component and a directional component, can be done using Fourier series expansions if we consider the conditional distribution of the linear component given the angular component. This paper presents the second order model which is a natural extension of the Mardia and Sutton (1978) first order model. This model can be parameterized either in polar or Cartesian coordinates, and allows for parameter estimation using standard multiple linear regression. Characteristic of the new model, how to compare the adequacy of the fit for first and second order models, and an example involving wind direction and temperature are presented.  相似文献   

19.
The generalized estimating equation (GEE) approach to the analysis of longitudinal data has many attractive robustness properties and can provide a 'population average' characterization of interest, for example, to clinicians who have to treat patients on the basis of their observed characteristics. However, these methods have limitations which restrict their usefulness in both the social and the medical sciences. This conclusion is based on the premise that the main motivations for longitudinal analysis are insight into microlevel dynamics and improved control for omitted or unmeasured variables. We claim that to address these issues a properly formulated random-effects model is required. In addition to a theoretical assessment of some of the issues, we illustrate this by reanalysing data on polyp counts. In this example, the covariates include a base-line outcome, and the effectiveness of the treatment seems to vary by base-line. We compare the random-effects approach with the GEE approach and conclude that the GEE approach is inappropriate for assessing the treatment effects for these data.  相似文献   

20.
Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are overdispersed is often reached by checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater than one; however, there is currently no fixed threshold for declaring the need for statistical intervention. We consider simulated cross-sectional and longitudinal datasets containing varying magnitudes of overdispersion caused by outliers or zero inflation, as well as real datasets, to determine an appropriate threshold value of this statistic which indicates when overdispersion should be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号