首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider the multiple hypotheses testing problem controlling the generalized familywise error rate k-FWER, the probability of at least k false rejections. We propose a plug-in procedure based on the estimation of the number of true null hypotheses. Under the independence assumption of the p-values corresponding to the true null hypotheses, we first introduce the least favorable configuration (LFC) of k-FWER for Bonferroni-type plug-in procedure, then we construct a plug-in k-FWER-controlled procedure based on LFC. For dependent p-values, we establish the asymptotic k-FWER control under some mild conditions. Simulation studies suggest great improvement over generalized Bonferroni test and generalized Holm test.  相似文献   

2.
The idea of modifying, and potentially improving, classical multiple testing methods controlling the familywise error rate (FWER) via an estimate of the unknown number of true null hypotheses has been around for a long time without a formal answer to the question whether or not such adaptive methods ultimately maintain the strong control of FWER, until Finner and Gontscharuk (2009) and Guo (2009) have offered some answers. A class of adaptive Bonferroni and S?idàk methods larger than considered in those papers is introduced, with the FWER control now proved under a weaker distributional setup. Numerical results show that there are versions of adaptive Bonferroni and S?idàk methods that can perform better under certain positive dependence situations than those previously considered. A different adaptive Holm method and its stepup analog, referred to as an adaptive Hochberg method, are also introduced, and their FWER control is proved asymptotically, as in those papers. These adaptive Holm and Hochberg methods are numerically seen to often outperform the previously considered adaptive Holm method.  相似文献   

3.
Summary.  Estimation of the number or proportion of true null hypotheses in multiple-testing problems has become an interesting area of research. The first important work in this field was performed by Schweder and Spjøtvoll. Among others, they proposed to use plug-in estimates for the proportion of true null hypotheses in multiple-test procedures to improve the power. We investigate the problem of controlling the familywise error rate FWER when such estimators are used as plug-in estimators in single-step or step-down multiple-test procedures. First we investigate the case of independent p -values under the null hypotheses and show that a suitable choice of plug-in estimates leads to control of FWER in single-step procedures. We also investigate the power and study the asymptotic behaviour of the number of false rejections. Although step-down procedures are more difficult to handle we briefly consider a possible solution to this problem. Anyhow, plug-in step-down procedures are not recommended here. For dependent p -values we derive a condition for asymptotic control of FWER and provide some simulations with respect to FWER and power for various models and hypotheses.  相似文献   

4.
Interest in confirmatory adaptive combined phase II/III studies with treatment selection has increased in the past few years. These studies start comparing several treatments with a control. One (or more) treatment(s) is then selected after the first stage based on the available information at an interim analysis, including interim data from the ongoing trial, external information and expert knowledge. Recruitment continues, but now only for the selected treatment(s) and the control, possibly in combination with a sample size reassessment. The final analysis of the selected treatment(s) includes the patients from both stages and is performed such that the overall Type I error rate is strictly controlled, thus providing confirmatory evidence of efficacy at the final analysis. In this paper we describe two approaches to control the Type I error rate in adaptive designs with sample size reassessment and/or treatment selection. The first method adjusts the critical value using a simulation-based approach, which incorporates the number of patients at an interim analysis, the true response rates, the treatment selection rule, etc. We discuss the underlying assumptions of simulation-based procedures and give several examples where the Type I error rate is not controlled if some of the assumptions are violated. The second method is an adaptive Bonferroni-Holm test procedure based on conditional error rates of the individual treatment-control comparisons. We show that this procedure controls the Type I error rate, even if a deviation from a pre-planned adaptation rule or the time point of such a decision is necessary.  相似文献   

5.
This paper considers p-value based step-wise rejection procedures for testing multiple hypotheses. The existing procedures have used constants as critical values at all steps. With the intention of incorporating the exact magnitude of the p-values at the earlier steps into the decisions at the later steps, this paper applies a different strategy that the critical values at the later steps are determined as functions of the p-values from the earlier steps. As a result, we have derived a new equality and developed a two-step rejection procedure following that. The new procedure is a short-cut of a step-up procedure, and it possesses great simplicity. In terms of power, the proposed procedure is generally comparable to the existing ones and exceptionally superior when the largest p-value is anticipated to be less than 0.5.  相似文献   

6.
Many multiple testing procedures (MTPs) are available today, and their number is growing. Also available are many type I error rates: the family-wise error rate (FWER), the false discovery rate, the proportion of false positives, and others. Most MTPs are designed to control a specific type I error rate, and it is hard to compare different procedures. We approach the problem by studying the exact level at which threshold step-down (TSD) procedures (an important class of MTPs exemplified by the classic Holm procedure) control the generalized FWER   defined as the probability of kk or more false rejections. We find that level explicitly for any TSD procedure and any kk. No assumptions are made about the dependency structure of the pp-values of the individual tests. We derive from our formula a criterion for unimprovability   of a procedure in the class of TSD procedures controlling the generalized FWER at a given level. In turn, this criterion implies that for each kk the number of such unimprovable procedures is finite and is greater than one if k>1k>1. Consequently, in this case the most rejective procedure in the above class does not exist.  相似文献   

7.
A generalization of step-up and step-down multiple test procedures is proposed. This step-up-down procedure is useful when the objective is to reject a specified minimum number, q, out of a family of k hypotheses. If this basic objective is met at the first step, then it proceeds in a step-down manner to see if more than q hypotheses can be rejected. Otherwise it proceeds in a step-up manner to see if some number less than q hypotheses can be rejected. The usual step-down procedure is the special case where q = 1, and the usual step-up procedure is the special case where q = k. Analytical and numerical comparisons between the powers of the step-up-down procedures with different choices of q are made to see how these powers depend on the actual number of false hypotheses. Examples of application include comparing the efficacy of a treatment to a control for multiple endpoints and testing the sensitivity of a clinical trial for comparing the efficacy of a new treatment with a set of standard treatments.  相似文献   

8.
In genetic association studies, detecting phenotype–genotype association is a primary goal. We assume that the relationship between the data—phenotype, genetic markers and environmental covariates—can be modeled by a generalized linear model. The number of markers is allowed to be far greater than the number of individuals of the study. A multivariate score statistic is used to test each marker for association with a phenotype. We assume that the test statistics asymptotically follow a multivariate normal distribution under the complete null hypothesis of no phenotype–genotype association. We present the familywise error rate order k approximation method to find a local significance level (alternatively, an adjusted p-value) for each test such that the familywise error rate is controlled. The special case k=1 gives the Šidák method. As a by-product, an effective number of independent tests can be defined. Furthermore, if environmental covariates and genetic markers are uncorrelated, or no environmental covariates are present, we show that covariances between score statistics depend on genetic markers alone. This not only leads to more efficient calculations but also to a local significance level that is determined only by the collection of markers used, independent of the phenotypes and environmental covariates of the experiment at hand.  相似文献   

9.
Consider the problem of simultaneously testing a nonhierarchical finite family of hypotheses based on independent test statistics. A general stepwise test is defined, of which the well known step-down and step-up tests are special cases. The step-up test is shown to dominate the other stepwise tests, including the step-down test, for situations of practical importance. When testing against two-sided alternatives, it is pointed out that if the step-up test is augmented to include directional decisions then the augmented step-up test controls the type I and III familywise error jointly at the original level q. The definition of the adjusted p values for the step-up test is justified. The results are illustrated by a numerical example.  相似文献   

10.
Summary. We investigate the operating characteristics of the Benjamini–Hochberg false discovery rate procedure for multiple testing. This is a distribution-free method that controls the expected fraction of falsely rejected null hypotheses among those rejected. The paper provides a framework for understanding more about this procedure. We first study the asymptotic properties of the `deciding point' D that determines the critical p -value. From this, we obtain explicit asymptotic expressions for a particular risk function. We introduce the dual notion of false non-rejections and we consider a risk function that combines the false discovery rate and false non-rejections. We also consider the optimal procedure with respect to a measure of conditional risk.  相似文献   

11.
Simultaneously testing a family of n null hypotheses can arise in many applications. A common problem in multiple hypothesis testing is to control Type-I error. The probability of at least one false rejection referred to as the familywise error rate (FWER) is one of the earliest error rate measures. Many FWER-controlling procedures have been proposed. The ability to control the FWER and achieve higher power is often used to evaluate the performance of a controlling procedure. However, when testing multiple hypotheses, FWER and power are not sufficient for evaluating controlling procedure’s performance. Furthermore, the performance of a controlling procedure is also governed by experimental parameters such as the number of hypotheses, sample size, the number of true null hypotheses and data structure. This paper evaluates, under various experimental settings, the performance of some FWER-controlling procedures in terms of five indices, the FWER, the false discovery rate, the false non-discovery rate, the sensitivity and the specificity. The results can provide guidance on how to select an appropriate FWER-controlling procedure to meet a study’s objective.  相似文献   

12.
A study design with two or more doses of a test drug and placebo is frequently used in clinical drug development. Multiplicity issues arise when there are multiple comparisons between doses of test drug and placebo, and also when there are comparisons of doses with one another. An appropriate analysis strategy needs to be specified in advance to avoid spurious results through insufficient control of Type I error, as well as to avoid the loss of power due to excessively conservative adjustments for multiplicity. For evaluation of alternative strategies with possibly complex management of multiplicity, we compare the performance of several testing procedures through the simulated data that represent various patterns of treatment differences. The purpose is to identify which methods perform better or more robustly than the others and under what conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Halperin et al. (1988) suggested an approach which allows for k Type I errors while using Scheffe's method of multiple comparisons for linear combinations of p means. In this paper we apply the same type of error control to Tukey's method of multiple pairwise comparisons. In fact, the variant of the Tukey (1953) approach discussed here defines the error control objective as assuring with a specified probability that at most one out of the p(p-l)/2 comparisons between all pairs of the treatment means is significant in two-sided tests when an overall null hypothesis (all p means are equal) is true or, from a confidence interval point of view, that at most one of a set of simultaneous confidence intervals for all of the pairwise differences of the treatment means is incorrect. The formulae which yield the critical values needed to carry out this new procedure are derived and the critical values are tabulated. A Monte Carlo study was conducted and several tables are presented to demonstrate the experimentwise Type I error rates and the gains in power furnished by the proposed procedure  相似文献   

14.
A method for controlling the familywise error rate combining the Bonferroni adjustment and fixed testing sequence procedures is proposed. This procedure allots Type I error like the Bonferroni adjustment, but allows the Type I error to accumulate whenever a null hypothesis is rejected. In this manner, power for hypotheses tested later in a prespecified order will be increased. The order of the hypothesis tests needs to be prespecified as in a fixed sequence testing procedure, but unlike the fixed sequence testing procedure all hypotheses can always be tested, allowing for an a priori method of concluding a difference in the various endpoints. An application will be in clinical trials in which mortality is a concern, but it is expected that power to distinguish a difference in mortality will be low. If the effect on mortality is larger than anticipated, this method allows a test with a prespecified method of controlling the Type I error rate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Traditional multiple hypothesis testing procedures fix an error rate and determine the corresponding rejection region. In 2002 Storey proposed a fixed rejection region procedure and showed numerically that it can gain more power than the fixed error rate procedure of Benjamini and Hochberg while controlling the same false discovery rate (FDR). In this paper it is proved that when the number of alternatives is small compared to the total number of hypotheses, Storey's method can be less powerful than that of Benjamini and Hochberg. Moreover, the two procedures are compared by setting them to produce the same FDR. The difference in power between Storey's procedure and that of Benjamini and Hochberg is near zero when the distance between the null and alternative distributions is large, but Benjamini and Hochberg's procedure becomes more powerful as the distance decreases. It is shown that modifying the Benjamini and Hochberg procedure to incorporate an estimate of the proportion of true null hypotheses as proposed by Black gives a procedure with superior power.  相似文献   

16.
A generalized Holm’s procedure is proposed which can reject several null hypotheses at each step sequentially and also strongly controls the family-wise error rate regardless of the dependence of individual test statistics. The new procedure is more powerful than Holm’s procedure if the number of rejections m and m > 0 is prespecified before the test.  相似文献   

17.
Summary.  To help to design vaccines for acquired immune deficiency syndrome that protect broadly against many genetic variants of the human immunodeficiency virus, the mutation rates at 118 positions in HIV amino-acid sequences of subtype C versus those of subtype B were compared. The false discovery rate (FDR) multiple-comparisons procedure can be used to determine statistical significance. When the test statistics have discrete distributions, the FDR procedure can be made more powerful by a simple modification. The paper develops a modified FDR procedure for discrete data and applies it to the human immunodeficiency virus data. The new procedure detects 15 positions with significantly different mutation rates compared with 11 that are detected by the original FDR method. Simulations delineate conditions under which the modified FDR procedure confers large gains in power over the original technique. In general FDR adjustment methods can be improved for discrete data by incorporating the modification proposed.  相似文献   

18.
In this paper, we translate variable selection for linear regression into multiple testing, and select significant variables according to testing result. New variable selection procedures are proposed based on the optimal discovery procedure (ODP) in multiple testing. Due to ODP’s optimality, if we guarantee the number of significant variables included, it will include less non significant variables than marginal p-value based methods. Consistency of our procedures is obtained in theory and simulation. Simulation results suggest that procedures based on multiple testing have improvement over procedures based on selection criteria, and our new procedures have better performance than marginal p-value based procedures.  相似文献   

19.
In many scientific fields, it is interesting and important to determine whether an observed data stream comes from a prespecified model or not, particularly when the number of data streams is of large scale, where multiple hypotheses testing is necessary. In this article, we consider large-scale model checking under certain dependence among different data streams observed at the same time. We propose a false discovery rate (FDR) control procedure to check those unusual data streams. Specifically, we derive an approximation of false discovery and construct a point estimate of FDR. Theoretical results show that, under some mild assumptions, our proposed estimate of FDR is simultaneously conservatively consistent with the true FDR, and hence it is an asymptotically strong control procedure. Simulation comparisons with some competing procedures show that our proposed FDR procedure behaves better in general settings. Application of our proposed FDR procedure is illustrated by the StarPlus fMRI data.  相似文献   

20.
Abstract

Inferential methods based on ranks present robust and powerful alternative methodology for testing and estimation. In this article, two objectives are followed. First, develop a general method of simultaneous confidence intervals based on the rank estimates of the parameters of a general linear model and derive the asymptotic distribution of the pivotal quantity. Second, extend the method to high dimensional data such as gene expression data for which the usual large sample approximation does not apply. It is common in practice to use the asymptotic distribution to make inference for small samples. The empirical investigation in this article shows that for methods based on the rank-estimates, this approach does not produce a viable inference and should be avoided. A method based on the bootstrap is outlined and it is shown to provide a reliable and accurate method of constructing simultaneous confidence intervals based on rank estimates. In particular it is shown that commonly applied methods of normal or t-approximation are not satisfactory, particularly for large-scale inferences. Methods based on ranks are uniquely suitable for analysis of microarray gene expression data since they often involve large scale inferences based on small samples containing a large number of outliers and violate the assumption of normality. A real microarray data is analyzed using the rank-estimate simultaneous confidence intervals. Viability of the proposed method is assessed through a Monte Carlo simulation study under varied assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号