首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.  相似文献   

2.
We propose a penalized quantile regression for partially linear varying coefficient (VC) model with longitudinal data to select relevant non parametric and parametric components simultaneously. Selection consistency and oracle property are established. Furthermore, if linear part and VC part are unknown, we propose a new unified method, which can do three types of selections: separation of varying and constant effects, selection of relevant variables, and it can be carried out conveniently in one step. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method.  相似文献   

3.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

4.
We study the focused information criterion and frequentist model averaging and their application to post‐model‐selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non‐parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR‐estimator of a focused parameter is a non‐linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non‐normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure.  相似文献   

5.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

6.
In this paper, we propose robust randomized quantile regression estimators for the mean and (condition) variance functions of the popular heteroskedastic non parametric regression model. Unlike classical approaches which consider quantile as a fixed quantity, our method treats quantile as a uniformly distributed random variable. Our proposed method can be employed to estimate the error distribution, which could significantly improve prediction results. An automatic bandwidth selection scheme will be discussed. Asymptotic properties and relative efficiencies of the proposed estimators are investigated. Our empirical results show that the proposed estimators work well even for random errors with infinite variances. Various numerical simulations and two real data examples are used to demonstrate our methodologies.  相似文献   

7.
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.  相似文献   

8.
In this paper, we extend the composite quantile regression (CQR) method to a single-index model. The unknown link function is estimated by local composite quantile regression and the parametric index is estimated through the linear composite quantile. It is shown that the proposed estimators are consistent and asymptotically normal. The simulation studies and real data applications are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

9.
This paper contrasts two approaches to estimating quantile regression models: traditional semi-parametric methods and partially adaptive estimators using flexible probability density functions (pdfs). While more general pdfs could have been used, the skewed Laplace was selected for pedagogical purposes. Monte Carlo simulations are used to compare the behavior of the semi-parametric and partially adaptive quantile estimators in the presence of possibly skewed and heteroskedastic data. Both approaches accommodate skewness and heteroskedasticity which are consistent with linear quantiles; however, the partially adaptive estimator considered allows for non linear quantiles and also provides simple tests for symmetry and heteroskedasticity. The methods are applied to the problem of estimating conditional quantile functions for wages corresponding to different levels of education.  相似文献   

10.
Quantile regression is a very important statistical tool for predictive modelling and risk assessment. For many applications, conditional quantile at different levels are estimated separately. Consequently the monotonicity of conditional quantiles can be violated when quantile regression curves cross each other. In this paper, we propose a new Bayesian multiple quantile regression based on heavy tailed distribution for non-crossing. We consider a linear quantile regression model for simultaneous Bayesian estimation of multiple quantiles based on a regularly varying assumptions. The numerical and competitive performance of the proposed method is illustrated by simulation.  相似文献   

11.
This paper considers a problem of variable selection in quantile regression with autoregressive errors. Recently, Wu and Liu (2009) investigated the oracle properties of the SCAD and adaptive-LASSO penalized quantile regressions under non identical but independent error assumption. We further relax the error assumptions so that the regression model can hold autoregressive errors, and then investigate theoretical properties for our proposed penalized quantile estimators under the relaxed assumption. Optimizing the objective function is often challenging because both quantile loss and penalty functions may be non-differentiable and/or non-concave. We adopt the concept of pseudo data by Oh et al. (2007) to implement a practical algorithm for the quantile estimate. In addition, we discuss the convergence property of the proposed algorithm. The performance of the proposed method is compared with those of the majorization-minimization algorithm (Hunter and Li, 2005) and the difference convex algorithm (Wu and Liu, 2009) through numerical and real examples.  相似文献   

12.
Quantile regression methods have been widely used in many research areas in recent years. However conventional estimation methods for quantile regression models do not guarantee that the estimated quantile curves will be non‐crossing. While there are various methods in the literature to deal with this problem, many of these methods force the model parameters to lie within a subset of the parameter space in order for the required monotonicity to be satisfied. Note that different methods may use different subspaces of the space of model parameters. This paper establishes a relationship between the monotonicity of the estimated conditional quantiles and the comonotonicity of the model parameters. We develope a novel quasi‐Bayesian method for parameter estimation which can be used to deal with both time series and independent statistical data. Simulation studies and an application to real financial returns show that the proposed method has the potential to be very useful in practice.  相似文献   

13.
In this paper, we construct a non parametric estimator of conditional distribution function by the double-kernel local linear approach for left-truncated data, from which we derive the weighted double-kernel local linear estimator of conditional quantile. The asymptotic normality of the proposed estimators is also established. Finite-sample performance of the estimator is investigated via simulation.  相似文献   

14.
In this note we define a composite quantile function estimator in order to improve the accuracy of the classical bootstrap procedure in small sample setting. The composite quantile function estimator employs a parametric model for modelling the tails of the distribution and uses the simple linear interpolation quantile function estimator to estimate quantiles lying between 1/(n+1) and n/(n+1). The method is easily programmed using standard software packages and has general applicability. It is shown that the composite quantile function estimator improves the bootstrap percentile interval coverage for a variety of statistics and is robust to misspecification of the parametric component. Moreover, it is also shown that the composite quantile function based approach surprisingly outperforms the parametric bootstrap for a variety of small sample situations.  相似文献   

15.
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance.  相似文献   

16.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

17.
Partial linear single-index model (PLSIM) has both the flexibility of nonparametric treatment and interpretability of linear term, yet existing literatures about it mainly focused on mean regression, and quantile regression analysis is scarce. Based on free knot spline approximation, we apply asymmetric Laplace distribution to implement Bayesian quantile regression, and perform variable selection in linear term and index vector via binary indicators. Our approach is exempt from regularity conditions in frequentist method, and could execute variable selection and quantile regression under mutual posterior correction, which is also the first work to implement them jointly for PLSIM in fully Bayesian framework. The numerical simulation manifests the superiority of our approach to previous methods, which embodied in better efficiency of variable selection, index vector estimates and link function approximation with different error distributions. For illustration of its application, we build a power consumption model of A2/O process in wastewater treatment and emphatically analyze the impact of water quality factors.  相似文献   

18.
In biological, medical, and social sciences, multilevel structures are very common. Hierarchical models that take the dependencies among subjects within the same level are necessary. In this article, we introduce a semiparametric hierarchical composite quantile regression model for hierarchical data. This model (i) keeps the easy interpretability of the simple parametric model; (ii) retains some of the flexibility of the complex non parametric model; (iii) relaxes the assumptions that the noise variances and higher-order moments exist and are finite; and (iv) takes the dependencies among subjects within the same hierarchy into consideration. We establish the asymptotic properties of the proposed estimators. Our simulation results show that the proposed method is more efficient than the least-squares-based method for many non normally distributed errors. We illustrate our methodology with a real biometric data set.  相似文献   

19.
A new class of probability distributions, the so-called connected double truncated gamma distribution, is introduced. We show that using this class as the error distribution of a linear model leads to a generalized quantile regression model that combines desirable properties of both least-squares and quantile regression methods: robustness to outliers and differentiable loss function.  相似文献   

20.
ABSTRACT

This paper proposes a power-transformed linear quantile regression model for the residual lifetime of competing risks data. The proposed model can describe the association between any quantile of a time-to-event distribution among survivors beyond a specific time point and the covariates. Under covariate-dependent censoring, we develop an estimation procedure with two steps, including an unbiased monotone estimating equation for regression parameters and cumulative sum processes for the Box–Cox transformation parameter. The asymptotic properties of the estimators are also derived. We employ an efficient bootstrap method for the estimation of the variance–covariance matrix. The finite-sample performance of the proposed approaches are evaluated through simulation studies and a real example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号