共查询到20条相似文献,搜索用时 9 毫秒
1.
Aiming to avoid the sensitivity in the parameters estimation due to atypical observations or skewness, we develop asymmetric nonlinear regression models with mixed-effects, which provide alternatives to the use of normal distribution and other symmetric distributions. Nonlinear models with mixed-effects are explored in several areas of knowledge, especially when data are correlated, such as longitudinal data, repeated measures and multilevel data, in particular, for their flexibility in dealing with measures of areas such as economics and pharmacokinetics. The random components of the present model are assumed to follow distributions that belong to scale mixtures of skew-normal (SMSN) distribution family, that encompasses distributions with light and heavy tails, such as skew-normal, skew-Student-t, skew-contaminated normal and skew-slash, as well as symmetrical versions of these distributions. For the parameters estimation we obtain a numerical solution via the EM algorithm and its extensions, and the Newton-Raphson algorithm. An application with pharmacokinetic data shows the superiority of the proposed models, for which the skew-contaminated normal distribution has shown to be the most adequate distribution. A brief simulation study points to good properties of the parameter vector estimators obtained by the maximum likelihood method. 相似文献
2.
The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook's well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology. 相似文献
3.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies. 相似文献
4.
《Journal of Statistical Computation and Simulation》2012,82(8):1761-1778
The purpose of this paper is to develop diagnostics analysis for nonlinear regression models (NLMs) under scale mixtures of skew-normal (SMSN) distributions introduced by Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124]. This novel class of models provides a useful generalization of the symmetrical NLM [Vanegas LH, Cysneiros FJA. Assessment of diagnostic procedures in symmetrical nonlinear regression models. Comput. Statist. Data Anal. 2010;54:1002–1016] since the random terms distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as the skew-t, skew-slash, skew-contaminated normal distributions, among others. Motivated by the results given in Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124], we presented a score test for testing the homogeneity of the scale parameter and its properties are investigated through Monte Carlo simulations studies. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. The newly developed procedures are illustrated considering a real data set. 相似文献
5.
《Journal of Statistical Computation and Simulation》2012,82(17):3549-3559
The distribution of weighted function of independent skew-normal random variables, which includes the sample mean, is useful in many applications. In this paper, we derive this distribution and study the null distribution of a linear form and a quadratic form. Finally, we discuss some of its applications in control charts, in which the skew-normal model plays a key role. 相似文献
6.
Seyedjavad Ahmadi Mousavi Vahid Amirzadeh Ayob Sheikhy 《Journal of Statistical Computation and Simulation》2019,89(17):3167-3181
In practice, a financial or actuarial data set may be a skewed or heavy-tailed and this motivates us to study a class of distribution functions in risk management theory that provide more information about these characteristics resulting in a more accurate risk analysis. In this paper, we consider a multivariate tail conditional expectation (MTCE) for multivariate scale mixtures of skew-normal (SMSN) distributions. This class of distributions contains skewed distributions and some members of this class can be used to analyse heavy-tailed data sets. We also provide a closed form for TCE in a univariate skew-normal distribution framework. Numerical examples are also provided for illustration. 相似文献
7.
Mohammad Mahdi Maghami Mohammad Bahrami Farkhondeh Alsadat Sajadi 《Journal of applied statistics》2020,47(16):3030
A particular concerns of researchers in statistical inference is bias in parameters estimation. Maximum likelihood estimators are often biased and for small sample size, the first order bias of them can be large and so it may influence the efficiency of the estimator. There are different methods for reduction of this bias. In this paper, we proposed a modified maximum likelihood estimator for the shape parameter of two popular skew distributions, namely skew-normal and skew-t, by offering a new method. We show that this estimator has lower asymptotic bias than the maximum likelihood estimator and is more efficient than those based on the existing methods. 相似文献
8.
Filidor V. Labra Aldo M. Garay Victor H. Lachos Edwin M.M. Ortega 《Journal of statistical planning and inference》2012
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. 相似文献
9.
In this work, we develop some diagnostics for nonlinear regression model with scale mixtures of skew-normal (SMSN) and first-order autoregressive errors. The SMSN distribution class covers symmetric as well as asymmetric and heavy-tailed distributions, which offers a more flexible framework for modelling. Maximum-likelihood (ML) estimates are computed via an expectation–maximization-type algorithm. Local influence diagnostics and score test for the correlation are also derived. The performances of the ML estimates and the test statistic are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods. 相似文献
10.
Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal distribution, if its probability density function (p.d.f.) is given by f(z)=2φ p (z; ξ, Ω)π (z?ξ), z∈? p , where φ p (·; ξ, Ω) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix Ω, ξ∈? p , Ω>0, and π is a skewing function from ? p to ?, that is 0≤π (z)≤1 and π (?z)=1?π (z), ? z∈? p . First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and then investigate conditions for their independence. Finally explicit forms for the above distributions, m.g.f.’s and moments are derived when π (z)=κ (α′z), where α∈? p and κ is the normal, Laplace, logistic or uniform distribution function. 相似文献
11.
AbstractWe introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function. 相似文献
12.
ABSTRACTIn 2007, Domínguez-Molina et al. obtained the moment generating function (mgf) of the matrix variate closed skew normal distribution. In this paper, we use their mgf to obtain the first two moments and some additional properties of quadratic forms for the matrix variate skew normal distributions. The quadratic forms are particularly interesting because they are essentially correlation tests that introduce a new type of orthogonality condition. 相似文献
13.
It is vital for insurance companies to have appropriate levels of loss reserving to pay outstanding claims and related settlement costs. With many uncertainties and time lags inherently involved in the claims settlement process, loss reserving therefore must be based on estimates. Existing models and methods cannot cope with irregular and extreme claims and hence do not offer an accurate prediction of loss reserving. This paper extends the conventional normal error distribution in loss reserving modeling to a range of heavy-tailed distributions which are expressed by certain scale mixtures forms. This extension enables robust analysis and, in addition, allows an efficient implementation of Bayesian analysis via Markov chain Monte Carlo simulations. Various models for the mean of the sampling distributions, including the log-Analysis of Variance (ANOVA), log-Analysis of Covariance (ANCOVA) and state space models, are considered and the straightforward implementation of scale mixtures distributions is demonstrated using OpenBUGS. 相似文献
14.
Liu-Cang Wu Zhong-Zhan Zhang Deng-Ke Xu 《Journal of Statistical Computation and Simulation》2013,83(7):1266-1278
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies. 相似文献
15.
16.
In this paper, asymptotic normality is established for the parameters of the multivariate skew-normal distribution under two parametrizations. Also, an analytic expression and an asymptotic normal law are derived for the skewness vector of the skew-normal distribution. The estimates are derived using the method of moments. Convergence to the asymptotic distributions is examined both computationally and in a simulation experiment. 相似文献
17.
Danielle Morin-Wahhab 《统计学通讯:理论与方法》2013,42(2):499-508
In this paper, we give the exact moments of a ratio of qua- dratic forms in normal variables, where the quadratic forms are not assumed to be independent. This problem was tackled by other authors who gave approximations and partial results. Here we will give the exact moments for the general case. 相似文献
18.
Daniel C. F. Guzmn Clcio S. Ferreira Camila B. Zeller 《Journal of applied statistics》2021,48(16):3060
A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset. 相似文献
19.
Lin Chun-tu 《统计学通讯:理论与方法》2013,42(12):1517-1520
20.
Summary Moments and distributions of quadratic forms or quadratic expressions in normal variables are available in literature. Such
quadratic expressions are shown to be equivalent to a linear function of independent central or noncentral chi-square variables.
Some results on linear functions of generalized quadratic forms are also available in literature. Here we consider an arbitrary
linear function of matrix-variate gamma variables. Moments of the determinant of such a linear function are evaluated when
the matrix-variate gammas are independently distributed. By using these results, arbitrary non-null moments as well as the
non-null distribution of the likelihood ratio criterion for testing the hypothesis of equality of covariance matrices in independent
multivariate normal populations are derived. As a related result, the distribution of a linear function of independent matrix-variate
gamma random variables, which includes linear functions of independent Wishart matrices, is also obtained. Some properties
of generalized special functions of several matrix arguments are used in deriving these results. 相似文献