首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the context of longitudinal data analysis, a random function typically represents a subject that is often observed at a small number of time point. For discarding this restricted condition of observation number of each subject, we consider the semiparametric partially linear regression models with mean function x?βx?β + g(z), where x and z   are functional data. The estimations of ββ and g(z) are presented and some asymptotic results are given. It is shown that the estimator of the parametric component is asymptotically normal. The convergence rate of the estimator of the nonparametric component is also obtained. Here, the observation number of each subject is completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

2.
Partially linear regression models are semiparametric models that contain both linear and nonlinear components. They are extensively used in many scientific fields for their flexibility and convenient interpretability. In such analyses, testing the significance of the regression coefficients in the linear component is typically a key focus. Under the high-dimensional setting, i.e., “large p, small n,” the conventional F-test strategy does not apply because the coefficients need to be estimated through regularization techniques. In this article, we develop a new test using a U-statistic of order two, relying on a pseudo-estimate of the nonlinear component from the classical kernel method. Using the martingale central limit theorem, we prove the asymptotic normality of the proposed test statistic under some regularity conditions. We further demonstrate our proposed test's finite-sample performance by simulation studies and by analyzing some breast cancer gene expression data.  相似文献   

3.
The main purpose of this article is to consider the covariate-adjusted regression (CAR) model for time series. The CAR model was initially proposed by Sentürk and Müller (2005 Sentürk , D. , Müller , H. G. ( 2005 ). Covariate-adjusted regression . Biometrika 92 : 7589 .[Crossref], [Web of Science ®] [Google Scholar]) for such situations where predictor and response variables are not directly observed, but are distorted by some common observable covariate. Despite CAR being originally designed for independent cross-sectional data, multiple works have extended this method to dependent data setting. In this article, the authors extend CAR to the distorted time series setting. This extension is meaningful in many fields such as econometrics, mathematical finance, and signal processing. The estimates of regression parameters are proposed by establishing connection with functional-coefficient time series model. The consistency and asymptotic normality of the proposed estimates are investigated under the α-mixing conditions. Real data and simulated examples are provided for illustration.  相似文献   

4.
This paper studies M-estimation in functional linear regression in which the dependent variable is scalar while the covariate is a function. An estimator for the slope function is obtained based on the functional principal component basis. The global convergence rate of the M-estimator of unknown slope function is established. The convergence rate of the mean-squared prediction error for the proposed estimators is also established. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedure. Finally, the proposed method is applied to analyze the Berkeley growth data.  相似文献   

5.
6.
We consider a partially linear model with diverging number of groups of parameters in the parametric component. The variable selection and estimation of regression coefficients are achieved simultaneously by using the suitable penalty function for covariates in the parametric component. An MM-type algorithm for estimating parameters without inverting a high-dimensional matrix is proposed. The consistency and sparsity of penalized least-squares estimators of regression coefficients are discussed under the setting of some nonzero regression coefficients with very small values. It is found that the root pn/n-consistency and sparsity of the penalized least-squares estimators of regression coefficients cannot be given consideration simultaneously when the number of nonzero regression coefficients with very small values is unknown, where pn and n, respectively, denote the number of regression coefficients and sample size. The finite sample behaviors of penalized least-squares estimators of regression coefficients and the performance of the proposed algorithm are studied by simulation studies and a real data example.  相似文献   

7.
In this article, we propose a semi-parametric mode regression for a non linear model. We use an expectation-maximization algorithm in order to estimate the regression coefficients of modal non linear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.  相似文献   

8.
9.
The authors study the properties of the ordinary least squares trend estimator in a simple linear regression model with multiple known level shift times. The error component in the model is taken to be a general short‐memory stationary time series. The authors establish the consistency and asymptotic normality of the estimator. They also present a climatological application in which the multiple level shifts are prominent features.  相似文献   

10.
In this article, we investigate a new estimation approach for the partially linear single-index model based on modal regression method, where the non parametric function is estimated by penalized spline method. Moreover, we develop an expection maximum (EM)-type algorithm and establish the large sample properties of the proposed estimation method. A distinguishing characteristic of the newly proposed estimation is robust against outliers through introducing an additional tuning parameter which can be automatically selected using the observed data. Simulation studies and real data example are used to evaluate the finite-sample performance, and the results show that the newly proposed method works very well.  相似文献   

11.
12.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

13.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

14.
Spatial data and non parametric methods arise frequently in studies of different areas and it is a common practice to analyze such data with semi-parametric spatial autoregressive (SPSAR) models. We propose the estimations of SPSAR models based on maximum likelihood estimation (MLE) and kernel estimation. The estimation of spatial regression coefficient ρ was done by optimizing the concentrated log-likelihood function with respect to ρ. Furthermore, under appropriate conditions, we derive the limiting distributions of our estimators for both the parametric and non parametric components in the model.  相似文献   

15.
We consider a Cox-type regression model with change-points in the covariates. A change-point specifies the unknown threshold at which the influence of a covariate shifts smoothly, i.e., the regression parameter may change over the range of a covariate and the underlying regression function is continuous but not differentiable. The model can be used to describe change-points in different covariates but also to model more than one change-point in a single covariate. Estimates of the change-points and of the regression parameters are derived and their properties are investigated. It is shown that not only the estimates of the regression parameters are [Formula: see text] -consistent but also the estimates of the change-points in contrast to the conjecture of other authors. Asymptotic normality is shown by using results developed for M-estimators. At the end of this paper we apply our model to an actuarial dataset, the PBC dataset of Fleming and Harrington (Counting processes and survival analysis, 1991) and to a dataset of electric motors.  相似文献   

16.
Estimationof the coefficient vector of a linear regression model subject to ellipsoidal constraints on the coefficients has been considered. Shrinkage methodology has been synthesized with minimax estimation technique and an estimator based on this has been proposed. The properties of this estimator have been derived under a quadratic loss set-up of the decision theory which are analysed to assess the behaviour of the proposed estimator. Superiority conditions for the dominance of this estimator over the existing minimax and least-squares estimators have also been derived.  相似文献   

17.
We consider estimation of the linear part in a partially linear model for absolutely regular observations. The estimator using random weights are proposed and the asymptotic normality of the estimator is established without compact support assumption.  相似文献   

18.
In this paper, a censored linear errors-in-variables model is investigated. The asymptotic normality of the unknown parameter's estimator is obtained. Two empirical log-likelihood ratio statistics for the unknown parameter in the model are suggested. It is proved that the proposed statistics are asymptotically chi-squared under some mild conditions, and hence can be used to construct the confidence regions of the parameter of interest. Finite sample performance of the proposed method is illustrated in a simulation study.  相似文献   

19.
20.
We propose a new adaptive L1 penalized quantile regression estimator for high-dimensional sparse regression models with heterogeneous error sequences. We show that under weaker conditions compared with alternative procedures, the adaptive L1 quantile regression selects the true underlying model with probability converging to one, and the unique estimates of nonzero coefficients it provides have the same asymptotic normal distribution as the quantile estimator which uses only the covariates with non-zero impact on the response. Thus, the adaptive L1 quantile regression enjoys oracle properties. We propose a completely data driven choice of the penalty level λnλn, which ensures good performance of the adaptive L1 quantile regression. Extensive Monte Carlo simulation studies have been conducted to demonstrate the finite sample performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号