首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Abstract

For the restricted parameter space (0,1), we propose Zhang’s loss function which satisfies all the 7 properties for a good loss function on (0,1). We then calculate the Bayes rule (estimator), the posterior expectation, the integrated risk, and the Bayes risk of the parameter in (0,1) under Zhang’s loss function. We also calculate the usual Bayes estimator under the squared error loss function, and the Bayes estimator has been proved to underestimate the Bayes estimator under Zhang’s loss function. Finally, the numerical simulations and a real data example of some monthly magazine exposure data exemplify our theoretical studies of two size relationships about the Bayes estimators and the Posterior Expected Zhang’s Losses (PEZLs).  相似文献   

2.
3.
For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.  相似文献   

4.
We discover three interesting strings of inequalities among six Bayes estimators, where for the parameter space (0, 1), (0, ∞), and ( ? ∞, ∞), each case has a string of inequalities. The three strings of inequalities only depend on the loss functions, and the inequalities are independent of the chosen models and the used priors provided the Bayes estimators exist. Therefore, they exist in a general setting which makes them quite interesting. Finally, the numerical simulations exemplify the two strings of inequalities defined on (0, 1) and (0, ∞), and that there does not exist a string of inequalities among the six smallest posterior expected losses.  相似文献   

5.
This paper shows that a minimax Bayes rule and shrinkage estimators can be effectively applied to portfolio selection under the Bayesian approach. Specifically, it is shown that the portfolio selection problem can result in a statistical decision problem in some situations. Following that, we present a method for solving a problem involved in portfolio selection under the Bayesian approach.  相似文献   

6.
In this paper, we study the E-Bayesian and hierarchical Bayesian estimations of the parameter derived from Pareto distribution under different loss functions. The definition of the E-Bayesian estimation of the parameter is provided. Moreover, for Pareto distribution, under the condition of the scale parameter is known, based on the different loss functions, formulas of the E-Bayesian estimation and hierarchical Bayesian estimations for the shape parameter are given, respectively, properties of the E-Bayesian estimation – (i) the relationship between of E-Bayesian estimations under different loss functions are provided, (ii) the relationship between of E-Bayesian and hierarchical Bayesian estimations under the same loss function are also provided, and using the Monte Carlo method simulation example is given. Finally, combined with the golfers income data practical problem are calculated, the results show that the proposed method is feasible and convenient for application.  相似文献   

7.
Sihm et al. (2016 Sihm, J. S., A. Chhabra, and S. N. Gupta. 2016. An optional unrelated question RRT model. Involve: A Journal of Mathematics 9 (2):195209.[Crossref] [Google Scholar]) proposed an unrelated question binary optional randomized response technique (RRT) model for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In our work, decision theoretic approach has been followed to obtain Bayes estimates of the two parameters along with their corresponding minimal Bayes posterior expected losses (BPEL) using beta prior and squared error loss function (SELF). Relative losses are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Sihm et al. (2016 Sihm, J. S., A. Chhabra, and S. N. Gupta. 2016. An optional unrelated question RRT model. Involve: A Journal of Mathematics 9 (2):195209.[Crossref] [Google Scholar]). The results obtained are illustrated with the help of real survey data using non informative prior.  相似文献   

8.
The objective of this paper is to study the efficiency of sampling schemes suggested by Hosmer(1973), termed models Ml and M2, relative to the regular random sampling, termed model MO, when samples are drawn from a population having the Inverse Gaussian-Weibull (IG-W) mixture distribution.

It has been shown that whether the efficiency is based on relative variances of the maximum likelihood estimates (ML,E's) of the components of the vector of parameters or on the generalized variances of the MLE's of that vector, Hosmer's models Ml or M2 perform better than model MO.  相似文献   

9.
In this paper, the Bayesian approach is applied to the estimation problem in the case of step stress partially accelerated life tests with two stress levels and type-I censoring. Gompertz distribution is considered as a lifetime model. The posterior means and posterior variances are derived using the squared-error loss function. The Bayes estimates cannot be obtained in explicit forms. Approximate Bayes estimates are computed using the method of Lindley [D.V. Lindley, Approximate Bayesian methods, Trabajos Estadistica 31 (1980), pp. 223–237]. The advantage of this proposed method is shown. The approximate Bayes estimates obtained under the assumption of non-informative priors are compared with their maximum likelihood counterparts using Monte Carlo simulation.  相似文献   

10.
Until recently, a difficulty with applying the Durbin-Watson (DW) test to the dynamic linear regression model has been the lack of appropriate critical values. Inder (1986) used a modified small-disturbance distribution (SDD) to find approximate critical values. King and Wu (1991) showed that the exact SDD of the DW statistic is equivalent to the distribution of the DW statistic from the regression with the lagged dependent variables replaced by their means. Unfortunately, these means are unknown although they could be estimated by the actual variable values. This provides a justification for using the exact critical values of the DW statistic from the regression with the lagged dependent variables treated as non-stochastic regressors. Extensive Monte Carlo experiments are reported in this paper. They show that this approach leads to reasonably accurate critical values, particularly when two lags of the dependent variable are present. Robustness to non-normality is also investigated.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号