首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, a semi-Markovian random walk with delay and a discrete interference of chance (X(t)) is considered. It is assumed that the random variables ζ n , n = 1, 2,…, which describe the discrete interference of chance form an ergodic Markov chain with ergodic distribution which is a gamma distribution with parameters (α, λ). Under this assumption, the asymptotic expansions for the first four moments of the ergodic distribution of the process X(t) are derived, as λ → 0. Moreover, by using the Riemann zeta-function, the coefficients of these asymptotic expansions are expressed by means of numerical characteristics of the summands, when the process considered is a semi-Markovian Gaussian random walk with small drift β.  相似文献   

2.
ABSTRACT

In this study, a renewal-reward process with a discrete interference of chance is constructed and considered. Under weak conditions, the ergodicity of the process X(t) is proved and exact formulas for the ergodic distribution and its moments are found. Within some assumptions for the discrete interference of chance in general form, two-term asymptotic expansions for all moments of the ergodic distribution are obtained. Additionally, kurtosis coefficient, skewness coefficient, and coefficient of variation of the ergodic distribution are computed. As a special case, a semi-Markovian inventory model of type (s, S) is investigated.  相似文献   

3.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

4.
This article studies the asymptotic properties of the random weighted empirical distribution function of independent random variables. Suppose X1, X2, ???, Xn is a sequence of independent random variables, and this sequence is not required to be identically distributed. Denote the empirical distribution function of the sequence by Fn(x). Based on the random weighting method and Fn(x), the random weighted empirical distribution function Hn(x) is constructed and the asymptotic properties of Hn are discussed. Under weak conditions, the Glivenko–Cantelli theorem and the central limit theorem for the random weighted empirical distribution function are obtained. The obtained results have also been applied to study the distribution functions of random errors of multiple sensors.  相似文献   

5.
Let X1,X2,… be independent and identically distributed nonnegative random variables with mean μ, and let Sn = X1 + … + Xn. For each λ > 0 and each n ≥ 1, let An be the interval [λnY, ∞), where γ > 1 is a constant. The number of times that Sn is in An is denoted by N. As λ tends to zero, the asymtotic behavior of N is studied. Specifically under suitable conditions, the expectation of N is shown to be (μλ?1)β + o(λ?β/2 where β = 1/(γ-1) and the variance of N is shown to be (μλ?1)β(βμ1)2σ2 + o(λ) where σ2 is the variance of Xn.  相似文献   

6.
Some asymptotic expansions not necessarily related to the central limit theorem are studied. We first observe that the smoothing inequality of Esseen implies the proximity, in the Kolmogorov distance sense, of the distributions of the random variables of two random sequences satisfying a sort of general asymptotic relation. We then present several instances of this observation. A first example, partially motivated by the the statistical theory of high precision measurements, is given by a uniform asymptotic approximation to (g(X + μ n )) n∈?, where g is some smooth function, X is a random variable and (μ n ) n∈? is a sequence going to infinity; a multivariate version is also stated and proved. We finally present a second class of examples given by a randomization of the interesting parameter in some classical asymptotic formulas; namely, a generic Laplace's type integral, randomized by the sequence (μ n X) n∈?, X being a Gamma distributed random variable.  相似文献   

7.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

8.
ABSTRACT

In Bayesian theory, calculating a posterior probability distribution is highly important but typically difficult. Therefore, some methods have been proposed to deal with such problem, among which, the most popular one is the asymptotic expansions of posterior distributions. In this paper, we propose an alternative approach, named a random weighting method, for scaled posterior distributions, and give an ideal convergence rate, o(n( ? 1/2)), which serves as the theoretical guarantee for methods of numerical simulations.  相似文献   

9.
In a recent paper (J. Statist. Comput. Simul., 1995, Vol.53, pp. 195–203) P. A. Wright proposed a new process capability index Cs which generalizes the Pearn-Kotz-Johnson’s index Cpmk by taking into account the skewness (in addition to deviation of the mean from tliCrntarget already incorporated in Cpmk ). The purpose of this article is to study the consistency and asymptotics of an estimate ?s of Cs The asymptotic distribution provides an insight into some desirable properties of the estimate which are not apparent from its original definition  相似文献   

10.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

11.
Consistency and asymptotic normality of the maximum likelihood estimator of β in the loglinear model E(yi) = eα+βXi, where yi are independent Poisson observations, 1 iaan, are proved under conditions which are near necessary and sufficient. The asymptotic distribution of the deviance test for β=β0 is shown to be chi-squared with 1 degree of freedom under the same conditions, and a second order correction to the deviance is derived. The exponential model for censored survival data is also treated by the same methods.  相似文献   

12.
We provide general conditions to ensure the valid Laplace approximations to the marginal likelihoods under model misspecification, and derive the Bayesian information criteria including all terms of order Op(1). Under conditions in theorem 1 of Lv and Liu [J. R. Statist. Soc. B, 76, (2014), 141–167] and a continuity condition for prior densities, asymptotic expansions with error terms of order op(1) are derived for the log-marginal likelihoods of possibly misspecified generalized linear models. We present some numerical examples to illustrate the finite sample performance of the proposed information criteria in misspecified models.  相似文献   

13.
Let {Sn, n ≥ 1} be a sequence of partial sums of independent and identically distributed non-negative random variables with a common distribution function F. Let F belong to the domain of attraction of a stable law with exponent α, 0 < α < 1. Suppose H(t) = ? N(t), t ? 0, where N(t) = max(n : Sn ≥ t). Under some additional assumptions on F, the difference between H(t) and its asymptotic value as t → ∞ is estimated.  相似文献   

14.
Often, many complicated statistics used as estimators or test statistics take the form of the (multivariate) empirical distribution function evaluated at a random vector (Vn). Denote such statistics by Sn. This paper describes methods for the study of various asymptotic properties of Sn. First, under minimal assumptions, a weak asymptotic representation for Sn is derived. This result may be used to show the asymptotic normality of Sn. Second, under slightly more stringent regularity conditions, an almost sure representation of Sn, with suitable order (as.) of the remainder term is studied and then a law of the iterated logarithm for Sn, is derived. In this context, strong convergence results from a sequential point of view are also studied. Finally, weak convergence to a Brownian motion process is established. As an application, we show the limiting normality of Sn, for a random number of summands.  相似文献   

15.
ABSTRACT

Though the Pareto distribution is important to actuaries and economists, an exact expression for the distribution of the sum of n i.i.d. Pareto variates has been difficult to obtain in general. This article considers Pareto random variables with common probability density function (pdf) f(x) = (α/β) (1 + x/β)α+1 for x > 0, where α = 1,2,… and β > 0 is a scale parameter. To date, explicit expressions are known only for a few special cases: (i) α = 1 and n = 1,2,3; (ii) 0 < α < 1 and n = 1,2,…; and (iii) 1 < α < 2 and n = 1,2,…. New expressions are provided for the more general case where β > 0, and α and n are positive integers. Laplace transforms and generalized exponential integrals are used to derive these expressions, which involve integrals of real valued functions on the positive real line. An important attribute of these expressions is that the integrands involved are non oscillating.  相似文献   

16.
Let μ(ds, dx) denote Poisson random measure with intensity dsG(dx) on (0, ∞) × (0, ∞), for a measure G(dx) with tails varying regularly at ∞. We deal with estimation of index of regular variation α and weight parameter ξ if the point process is observed in certain windows Kn = [0, Tn] × [Yn, ∞), where Yn → ∞ as n → ∞. In particular, we look at asymptotic behaviour of the Hill estimator for α. In certain submodels, better estimators are available; they converge at higher speed and have a strong optimality property. This is deduced from the parametric case G(dx) = ξαxα−1 dx via a neighbourhood argument in terms of Hellinger distances.  相似文献   

17.
Let X1,X2, … be iid random variables with the pdf f(x,θ)=exp(θx?b(θ)) relative to a σ-finite measure μ, and consider the problem of deciding among three simple hypotheses Hi:θ=θi (1?i?3) subject to P(acceptHi|θi)=1?α (1?i?3). A procedure similar to Sobel–Wald procedure is discussed and its asymptotic efficiency as compared with the best nonsequential test is obtained by finding the limit lima→0(EiN(a)/n(a)), where N (a) is the stopping time of the proposed procedure and n(a) is the sample size of the best non-sequential test. It is shown that the same asymptotic limit holds for the original Sobel–Wald procedure. Specializing to N(θ,1) distribution it is found that lima→0(EiN(α)/n(α))=14 (i=1,2) and lima→0 (E3N(α)n(α))=δ21/4δ, where δi=(θi+1?θi) with 0<δ1?δ2. Also, the asymptotic efficiency evaluated when the X's have an exponential distribution.  相似文献   

18.
A simple random sample is observed from a population with a large number‘K’ of alleles, to test for random mating. Of n couples, nijkl have female genotype ij and male genotype kl (i, j, k, l{1,…, A‘}). The large contingency table is collapsed into three counts, n0, n1 and n2 where np is the number of couples with s alleles in common (s = 0,1, 2). The counts are estimated by np?o where n0, is the estimated probability of a couple having s alleles in common under the hypothesis of random mating. The usual chi-square goodness of fit statistic X2 compares observed (ns) with expected (np?) over the three categories, s = 0,1,2. An empirical observation has suggested that X2 is close to having a chi-square distribution with two degrees of freedom (X) despite a large number of parameters implicitly estimated in e. This paper gives two theorems which show that x is indeed the approximate distribution of X2 for large n and K1“, provided that no allele type over-dominates the others.  相似文献   

19.
For X with binomial (n, p) distribution the usual measure of the error of X/n as an estimator of p is its standard error Sn(p) = √{E(X/n – p)2} = √{p(1 – p)/n}. A somewhat more natural measure is the average absolute error Dn(p) = E‖X/n – p‖. This article considers use of Dn(p) instead of Sn(p) in a student's first introduction to statistical estimation. Exact and asymptotic values of Dn(p), and the appearance of its graph, are described in detail. The same is done for the Poisson distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号