首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the hypothesis testing and confidence region construction for a linear combination of mean vectors for K independent multivariate normal populations are considered. A new generalized pivotal quantity and a new generalized test variable are derived based on the concepts of generalized p-values and generalized confidence regions. When only two populations are considered, our results are equivalent to those proposed by Gamage et al. [Generalized p-values and confidence regions for the multivariate Behrens–Fisher problem and MANOVA, J. Multivariate Aanal. 88 (2004), pp. 117–189] in the bivariate case, which is also known as the bivariate Behrens–Fisher problem. However, in some higher dimension cases, these two results are quite different. The generalized confidence region is illustrated with two numerical examples and the merits of the proposed method are numerically compared with those of the existing methods with respect to their expected areas, coverage probabilities under different scenarios.  相似文献   

2.
Confidence regions for generalized least squares are commonly derived from a measure of departure calculated on the tangent plane at the MLE or on the tangent plane at the true value; the first gives approximate confidence regions, the second exact. For surfaces with curvature, indeed with varying curvature, the exact regions typically are not likelihood regions and can include parameter values of highest and of lowest likelihood. This paper develops an alternative approach to deriving exact confidence regions and uses both surface curvature and distance from the surface as supporting ingredients. For this, conditionality is invoked in two ways beyond that supported by the usual conditionality principle. For the case of normal error the ordinary chi-squared departure is replaced by a Von Mises-type angular (or cosine) departure which is assessed using curvature properties in the data direction and radial distance of the data from the regression surface. For the usual linear model (constant curvature equal to zero) the method coincides with the ordinary tests and confidence regions; for the case of constant nonzero curvature, the method generalizes to spheres and sphere-cylinders the Fisher (Statistical Methods and Scientific Inference, 1956) analysis of a rotationally symmetric normal on ?2 with mean constrained to a circle. The effects of conditioning are indicated by a computer plot for obtaining 95% confidence.  相似文献   

3.
This article investigates the confidence regions for semiparametric nonlinear reproductive dispersion models (SNRDMs), which is an extension of nonlinear regression models. Based on local linear estimate of nonparametric component and generalized profile likelihood estimate of parameter in SNRDMs, a modified geometric framework of Bates and Wattes is proposed. Within this geometric framework, we present three kinds of improved approximate confidence regions for the parameters and parameter subsets in terms of curvatures. The work extends the previous results of Hamilton et al. [in Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions, Ann. Statist. 10, pp. 386–393, 1982], Hamilton [in Confidence regions for parameter subset in nonlinear regression, Biometrika, 73, pp. 57–64, 1986], Wei [in On confidence regions of embedded models in regular parameter families (a geometric approch), Austral. J. Statist. 36, pp. 327–338, 1994], Tang et al. [in Confidence regions in quasi-likelihood nonlinear models: a geometric approach, J. Biomath. 15, pp. 55–64, 2000b] and Zhu et al. [in On confidence regions of semiparametric nonlinear regression models, Acta. Math. Scient. 20, pp. 68–75, 2000].  相似文献   

4.
Variance estimation is a fundamental yet important problem in statistical modelling. In this paper, we propose jackknife empirical likelihood (JEL) methods for the error variance in a linear regression model. We prove that the JEL ratio converges to the standard chi-squared distribution. The asymptotic chi-squared properties for the adjusted JEL and extended JEL estimators are also established. Extensive simulation studies to compare the new JEL methods with the standard method in terms of coverage probability and interval length are conducted, and the simulation results show that our proposed JEL methods perform better than the standard method. We also illustrate the proposed methods using two real data sets.  相似文献   

5.
In this article the author investigates the application of the empirical‐likelihood‐based inference for the parameters of varying‐coefficient single‐index model (VCSIM). Unlike the usual cases, if there is no bias correction the asymptotic distribution of the empirical likelihood ratio cannot achieve the standard chi‐squared distribution. To this end, a bias‐corrected empirical likelihood method is employed to construct the confidence regions (intervals) of regression parameters, which have two advantages, compared with those based on normal approximation, that is, (1) they do not impose prior constraints on the shape of the regions; (2) they do not require the construction of a pivotal quantity and the regions are range preserving and transformation respecting. A simulation study is undertaken to compare the empirical likelihood with the normal approximation in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. A real data example is given to illustrate the proposed approach. The Canadian Journal of Statistics 38: 434–452; 2010 © 2010 Statistical Society of Canada  相似文献   

6.
In the wood industry, it is common practice to compare in terms of the ratio of the same-strength properties for lumber of two different dimensions, grades, or species. Because United States lumber standards are given in terms of population fifth percentile, and strength problems arise from the weaker fifth percentile rather than the stronger mean, so the ratio should be expressed in terms of the fifth percentiles rather than the means of two strength distributions. Percentiles are estimated by order statistics. This paper assumes small samples to derive new non parametric methods such as percentile sign test and percentile Wilcoxon signed rank test, construct confidence intervals with covergage rate 1 – αx for single percentiles, and compute confidence regions for ratio of percentiles based on confidence intervals for single percentiles. Small 1 – αx is enough to obtain good coverage rates of confidence regions most of the time.  相似文献   

7.
Diagnostic techniques are proposed for assessing the influence of individual cases on confidence intervals in nonlinear regression. The technique proposed uses the method of profile t-plots applied to the case-deletion model. The effect of the geometry of the statistical model on the influence measures is assessed, and an algorithm for computing case-deleted confidence intervals is described. This algorithm provides a direct method for constructing a simple diagnostic measure based on the ratio of the lengths of confidence intervals. The generalization of these methods to multiresponse models is discussed.  相似文献   

8.
The problem of finding confidence intervals for the success parameter of a binomial experiment has a long history, and a myriad of procedures have been developed. Most exploit the duality between hypothesis testing and confidence regions and are typically based on large sample approximations. We instead employ a direct approach that attempts to determine the optimal coverage probability function a binomial confidence procedure can have from the exact underlying binomial distributions, which in turn defines the associated procedure. We show that a graphical perspective provides much insight into the problem. Both procedures whose coverage never falls below the declared confidence level and those that achieve that level only approximately are analyzed. We introduce the Length/Coverage Optimal method, a variant of Sterne's procedure that minimizes average length while maximizing coverage among all length minimizing procedures, and show that it is superior in important ways to existing procedures.  相似文献   

9.
This article discusses testing hypotheses and confidence regions with correct levels for the mean sojourn time of an M/M/1 queueing system. The uniformly most powerful unbiased tests for three usual hypothesis testing problems are obtained and the corresponding p values are provided. Based on the duality between hypothesis tests and confidence sets, the uniformly most accurate confidence bounds are derived. A confidence interval with correct level is proposed.  相似文献   

10.
Balanced Confidence Regions Based on Tukey's Depth and the Bootstrap   总被引:1,自引:0,他引:1  
We propose and study the bootstrap confidence regions for multivariate parameters based on Tukey's depth. The bootstrap is based on the normalized or Studentized statistic formed from an independent and identically distributed random sample obtained from some unknown distribution in R q . The bootstrap points are deleted on the basis of Tukey's depth until the desired confidence level is reached. The proposed confidence regions are shown to be second order balanced in the context discussed by Beran. We also study the asymptotic consistency of Tukey's depth-based bootstrap confidence regions. The applicability of the method proposed is demonstrated in a simulation study.  相似文献   

11.
The asymptotic results pertaining to the distribution of the log-likelihood ratio allow for the creation of a confidence region, which is a general extension of the confidence interval. Two- and three-dimensional regions can be displayed visually to describe the plausible region of the parameters of interest simultaneously. While most advanced statistical textbooks on inference discuss these asymptotic confidence regions, there is no exploration of how to numerically compute these regions for graphical purposes. This article demonstrates the application of a simple trigonometric transformation to compute two- and three-dimensional confidence regions; we transform the Cartesian coordinates of the parameters to create what we call the radial profile log-likelihood. The method is applicable to any distribution with a defined likelihood function, so it is not limited to specific data distributions or model paradigms. We describe the method along with the algorithm, follow with an example of our method, and end with an examination of computation time. Supplementary materials for this article are available online.  相似文献   

12.
ABSTRACT

This article develops an adjusted empirical likelihood (EL) method for the additive hazards model. The adjusted EL ratio is shown to have a central chi-squared limiting distribution under the null hypothesis. We also evaluate its asymptotic distribution as a non central chi-squared distribution under the local alternatives of order n? 1/2, deriving the expression for the asymptotic power function. Simulation studies and a real example are conducted to evaluate the finite sample performance of the proposed method. Compared with the normal approximation-based method, the proposed method tends to have more larger empirical power and smaller confidence regions with comparable coverage probabilities.  相似文献   

13.
In this paper, when a jointly Type-II censored sample arising from k independent exponential populations is available, the conditional MLEs of the k exponential mean parameters are derived. The moment generating functions and the exact densities of these MLEs are obtained using which exact confidence intervals are developed for the parameters. Moreover, approximate confidence intervals based on the asymptotic normality of the MLEs and credible confidence regions from a Bayesian viewpoint are also discussed. An empirical comparison of the exact, approximate, bootstrap, and Bayesian intervals is also made in terms of coverage probabilities. Finally, an example is presented in order to illustrate all the methods of inference developed here.  相似文献   

14.
It is known that the profile empirical likelihood method based on estimating equations is computationally intensive when the number of nuisance parameters is large. Recently, Li, Peng, & Qi (2011) proposed a jackknife empirical likelihood method for constructing confidence regions for the parameters of interest by estimating the nuisance parameters separately. However, when the estimators for the nuisance parameters have no explicit formula, the computation of the jackknife empirical likelihood method is still intensive. In this paper, an approximate jackknife empirical likelihood method is proposed to reduce the computation in the jackknife empirical likelihood method when the nuisance parameters cannot be estimated explicitly. A simulation study confirms the advantage of the new method. The Canadian Journal of Statistics 40: 110–123; 2012 © 2012 Statistical Society of Canada  相似文献   

15.
《Statistics》2012,46(6):1396-1436
ABSTRACT

The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.  相似文献   

16.
The among variance component in the balanced one-factor nested components-of-variance model is of interest in many fields of application. Except for an artificial method that uses a set of random numbers which is of no use in practical situations, an exact-size confidence interval on the among variance has not yet been derived. This paper provides a detailed comparison of three approximate confidence intervals which possess certain desired properties and have been shown to be the better methods among many available approximate procedures. Specifically, the minimum and the maximum of the confidence coefficients for the one- and two-sided intervals of each method are obtained. The expected lengths of the intervals are also compared.  相似文献   

17.
Let a group G act on the sample space. This paper gives another proof of a theorem of Stein relating a group invariant family of posterior Bayesian probability regions to classical confidence regions when an appropriate prior is used. The example of the central multivariate normal distribution is discussed.  相似文献   

18.
Suppose we have {(x i , y i )} i = 1, 2,…, n, a sequence of independent observations. We wish to find approximate 1 ? α simultaneous confidence bands for the regression curve. Many previous confidence bands in the literature have practical difficulties. In this article, the local linear smoother is used to estimate the regression curve. The bias of the estimator is considered. Different methods of constructing confidence bands are discussed. Finally, a possible method incorporating logistic regression in an innovative way is proposed to construct the bands for random designs. Simulations are used to study the performance or properties of the methods. The procedure for constructing confidence bands is entirely data-driven. The advantage of the proposed method is that it is simple to use and can be applied to random designs. It can be considered as a practically useful and efficient method.  相似文献   

19.
In this paper, we apply empirical likelihood for two-sample problems with growing high dimensionality. Our results are demonstrated for constructing confidence regions for the difference of the means of two p-dimensional samples and the difference in value between coefficients of two p-dimensional sample linear model. We show that empirical likelihood based estimator has the efficient property. That is, as p → ∞ for high-dimensional data, the limit distribution of the EL ratio statistic for the difference of the means of two samples and the difference in value between coefficients of two-sample linear model is asymptotic normal distribution. Furthermore, empirical likelihood (EL) gives efficient estimator for regression coefficients in linear models, and can be as efficient as a parametric approach. The performance of the proposed method is illustrated via numerical simulations.  相似文献   

20.
The purpose of this paper is to provide a method for constructing exact joint confidence regions for the parameters of type I (maximum) and type I (minimum) extreme value distributions. Joint confidence regions for the parameters of Weibull distributions are also discussed. The calculation for these joint confidence regions requires a small computer program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号