首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For given continuous distribution functions F(x) and G(y) and a Pearson correlation coefficient ρ, an algorithm is provided to construct a sequence of continuous bivariate distributions with marginals equal to F(x) and G(y) and the corresponding correlation coefficient converges to ρ. The algorithm can be easily implemented using S-Plus or R. Applications are given to generate bivariate random variables with marginals including Gamma, Beta, Weibull, and uniform distributions.  相似文献   

2.
In recent years characterization problems have become of increasing interest. It is well known that mean residual life e(x) = E(X - x|Xx) and right-censored mean function mR(x) = E(X | Xx), uniquely determine the distribution function F(x) = P(Xx). In this paper, we study characterizations problems for general distributions, using the doubly censored mean function m(x, y) = E(X | xXy). We show that m(x, y) characterizes F(x), obtaining the explicit expression of F(x) from m(x, y). Moreover, we give properties that any function must verifies to be a doubly censored mean function and we obtain stability theorems for these characterizations.  相似文献   

3.
Let H(x, y) be a continuous bivariate distribution function with known marginal distribution functions F(x) and G(y). Suppose the values of H are given at several points, H(x i , y i ) = θ i , i = 1, 2,…, n. We first discuss conditions for the existence of a distribution satisfying these conditions, and present a procedure for checking if such a distribution exists. We then consider finding lower and upper bounds for such distributions. These bounds may be used to establish bounds on the values of Spearman's ρ and Kendall's τ. For n = 2, we present necessary and sufficient conditions for existence of such a distribution function and derive best-possible upper and lower bounds for H(x, y). As shown by a counter-example, these bounds need not be proper distribution functions, and we find conditions for these bounds to be (proper) distribution functions. We also present some results for the general case, where the values of H(x, y) are known at more than two points. In view of the simplification in notation, our results are presented in terms of copulas, but they may easily be expressed in terms of distribution functions.  相似文献   

4.
Let (X, Y) be a bivariate random vector whose distribution function H(x, y) belongs to the class of bivariate extreme-value distributions. If F1 and F2 are the marginals of X and Y, then H(x, y) = C{F1(x),F2(y)}, where C is a bivariate extreme-value dependence function. This paper gives the joint distribution of the random variables Z = {log F1(X)}/{log F1(X)F2(Y)} and W = C{F1{(X),F2(Y)}. Using this distribution, an algorithm to generate random variables having bivariate extreme-value distribution is présentés. Furthermore, it is shown that for any bivariate extreme-value dependence function C, the distribution of the random variable W = C{F1(X),F2(Y)} belongs to a monoparametric family of distributions. This property is used to derive goodness-of-fit statistics to determine whether a copula belongs to an extreme-value family.  相似文献   

5.
A probability distribution function F is said to be symmetric when 1 ‐ F(x) ‐ F(‐x) = 0 for all x∈ R. Given a sequence of alternatives contiguous to a certain symmetric F0, the authors are concerned with testing for the null hypothesis of symmetry. The proposed tests are consistent against any nonsymmetric alternative, and their power with respect to the given sequence can easily be optimized. The tests are constructed by means of transformed empirical processes with an adequate selection of the underlying isometry, and the optimum power is obtained by suitably choosing the score functions. The test statistics are very easy to compute and their asymptotic distributions are simple.  相似文献   

6.
Consider a population the individuals in which can be classified into groups. Let y, the number of individuals in a group, be distributed according to a probability function f(y;øo) where the functional form f is known. The random variable y cannot be observed directly, and hence a random sample of groups cannot be obtained. Consider a random sample of N individuals from the population. Suppose the N individuals are distributed into S groups with x1, x2, …, xS representatives respectively. The random variable x, the number of individuals in a group in the sample, will be a fraction of its population counterpart y, and the distributions of x and y need not have the same functional form. If the two random variables x and y have the same functional form for their distributions, then the particular common distribution is called an invariant abundance distribution. The paper provides a characterization of invariant abundance distributions in the class of power-series distributions.  相似文献   

7.
Let {X 1, …, X n } and {Y 1, …, Y m } be two samples of independent and identically distributed observations with common continuous cumulative distribution functions F(x)=P(Xx) and G(y)=P(Yy), respectively. In this article, we would like to test the no quantile treatment effect hypothesis H 0: F=G. We develop a bootstrap quantile-treatment-effect test procedure for testing H 0 under the location-scale shift model. Our test procedure avoids the calculation of the check function (which is non-differentiable at the origin and makes solving the quantile effects difficult in typical quantile regression analysis). The limiting null distribution of the test procedure is derived and the procedure is shown to be consistent against a broad family of alternatives. Simulation studies show that our proposed test procedure attains its type I error rate close to the pre-chosen significance level even for small sample sizes. Our test procedure is illustrated with two real data sets on the lifetimes of guinea pigs from a treatment-control experiment.  相似文献   

8.
We construct those distributions minimizing Fisher information for scale in Kolmogorov neighbourhoods K?(G) = {F|supx|F(x) - G(x| ? ?} of d.f.'s G satisfying certain mild conditions. The theory is sufficiently general to include those cases in which G is normal, Laplace, logistic, Student's t, etc. As well, we consider G(x) = 1 - e-x, ? 0, and correct some errors in the literature concerning this case.  相似文献   

9.
ABSTRACT

This article considers the estimation of a distribution function FX(x) based on a random sample X1, X2, …, Xn when the sample is suspected to come from a close-by distribution F0(x). The new estimators, namely the preliminary test (PTE) and Stein-type estimator (SE) are defined and compared with the “empirical distribution function” (edf) under local departure. In this case, we show that Stein-type estimators are superior to edf and PTE is superior to edf when it is close to F0(x). As a by-product similar estimators are proposed for population quantiles.  相似文献   

10.
We study the characteristics of the Pickands' dependence function for bivariate extreme distribution for minima, BEVM, when considering the stochastics ordering of the two variables, X < Y. The existing Pickand's dependence function terminologies and theories are modified to suit the dependence functions of extreme minimum cases. The main result is the introduction of the restricted logistic dependence function, A RL , and the restricted exponential function, V RL (x, y).  相似文献   

11.
In partly linear models, the dependence of the response y on (x T, t) is modeled through the relationship y=x T β+g(t)+?, where ? is independent of (x T, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variables t take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study.  相似文献   

12.
Consider observations (representing lifelengths) taken on a random field indexed by lattice points. Estimating the distribution function F(x) = P(X i  ≤ x) is an important problem in survival analysis. We propose to estimate F(x) by kernel estimators, which take into account the smoothness of the distribution function. Under some general mixing conditions, our estimators are shown to be asymptotically unbiased and consistent. In addition, the proposed estimator is shown to be strongly consistent and sharp rates of convergence are obtained.  相似文献   

13.
ABSTRACT

We give conditions on a ? ?1, b ∈ ( ? ∞, ∞), and f and g so that Ca, b(x, y) = xy(1 + af(x)g(y))b is a bivariate copula. Many well-known copulas are of this form, including the Ali–Mikhail–Haq Family, Huang–Kotz Family, Bairamov–Kotz Family, and Bekrizadeh–Parham–Zadkarmi Family. One result is that we produce an algorithm for producing such copulas. Another is a one-parameter family of copulas whose measures of concordance range from 0 to 1.  相似文献   

14.
We consider the situation where one wants to maximise a functionf(θ,x) with respect tox, with θ unknown and estimated from observationsy k . This may correspond to the case of a regression model, where one observesy k =f(θ,x k )+ε k , with ε k some random error, or to the Bernoulli case wherey k ∈{0, 1}, with Pr[y k =1|θ,x k |=f(θ,x k ). Special attention is given to sequences given by , with an estimated value of θ obtained from (x1, y1),...,(x k ,y k ) andd k (x) a penalty for poor estimation. Approximately optimal rules are suggested in the linear regression case with a finite horizon, where one wants to maximize ∑ i=1 N w i f(θ, x i ) with {w i } a weighting sequence. Various examples are presented, with a comparison with a Polya urn design and an up-and-down method for a binary response problem.  相似文献   

15.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

16.
17.
Let X1,…, Xn be random variables symmetric about θ from a common unknown distribution Fθ(x) =F(x–θ). To test the null hypothesis H0:θ= 0 against the alternative H1:θ > 0, permutation tests can be used at the cost of computational difficulties. This paper investigates alternative tests that are computationally simpler, notably some bootstrap tests which are compared with permutation tests. Of these the symmetrical bootstrap-f test competes very favourably with the permutation test in terms of Bahadur asymptotic efficiency, so it is a very attractive alternative.  相似文献   

18.
Let X1,…,Xn be a sample from a population with continuous distribution function F(x?θ) such that F(x)+F(-x)=1 and 0<F(x)<1, x?R1. It is shown that the power- function of a monotone test of H: θ=θ0 against K: θ>θ0 cannot tend to 1 as θ?θ0 → ∞ more than n times faster than the tails of F tend to 0. Some standard as well as robust tests are considered with respect to this rate of convergence.  相似文献   

19.
This article studies the asymptotic properties of the random weighted empirical distribution function of independent random variables. Suppose X1, X2, ???, Xn is a sequence of independent random variables, and this sequence is not required to be identically distributed. Denote the empirical distribution function of the sequence by Fn(x). Based on the random weighting method and Fn(x), the random weighted empirical distribution function Hn(x) is constructed and the asymptotic properties of Hn are discussed. Under weak conditions, the Glivenko–Cantelli theorem and the central limit theorem for the random weighted empirical distribution function are obtained. The obtained results have also been applied to study the distribution functions of random errors of multiple sensors.  相似文献   

20.
For (x(t),y(t)), a diffusion process starting from (x(0),y(0)) = (x,y), the problem of computing the moment generating function of the first passage time T(x, y) to a given subset D of IR2is considered. A particular case of the method of similarity solutions is used. The problems that can be solved explicitly are those for which D is either a straight line or a circle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号