首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this note, we introduce a new class of dependent random variables (henceforth rvs), together with some its basic properties. This class includes independent rvs and pairwise negatively dependent rvs. Some extensions of Ranjbar et al. (2008) are discussed. The complete convergence for the new class of rvs is also proved, and some results of Beak and Park (2010 Beak, J.-II., and S. T. Park. 2010. Convergence of weighted sums for arrays of negatively dependent random variables and its applications. J. Stat. Plann. Inference 140:24612469.[Crossref], [Web of Science ®] [Google Scholar]) are extended to this class conveniently.  相似文献   

2.
ABSTRACT

In the article, the complete convergence and complete moment convergence for weighted sums of sequences of random variables satisfying a maximal Rosenthal type inequality are studied. As an application, the Marcinkiewicz–Zygmund type strong law of large numbers is obtained. Our partial results generalize and improve the corresponding ones of Shen (2013 Shen, A.T. (2013). On strong convergence for weighted sums of a class of random variables. Abstr. Appl. Anal.2013, Article ID 216236: 1–7. [Google Scholar]).  相似文献   

3.
Abstract

In this paper, we investigate the almost sure convergence for partial sums of asymptotically negatively associated (ANA, for short) random vectors in Hilbert spaces. The Khintchine-Kolmogorov type convergence theorem, three series theorem and the Kolmogorov type strong law of large numbers for partial sums of ANA random vectors in Hilbert spaces are obtained. The results obtained in the paper generalize some corresponding ones for independent random vectors and negatively associated random vectors in Hilbert spaces.  相似文献   

4.
Complete moment convergence for weighted sums of sequence of extended negatively dependent (END) random variables is discussed. Some new sufficient and necessary conditions of complete moment convergence for weighted sums of END random variables are obtained, which improve and extend some well-known results in the literature.  相似文献   

5.
Abstract

Let {Xn, n ? 1} be a sequence of negatively superadditive dependent (NSD, in short) random variables and {bni, 1 ? i ? n, n ? 1} be an array of real numbers. In this article, we study the strong law of large numbers for the weighted sums ∑ni = 1bniXi without identical distribution. We present some sufficient conditions to prove the strong law of large numbers. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for NSD random variables is obtained. In addition, the complete convergence for the weighted sums of NSD random variables is established. Our results generalize and improve some corresponding ones for independent random variables and negatively associated random variables.  相似文献   

6.
In this article, we establish the complete moment convergence of a moving-average process generated by a class of random variables satisfying the Rosenthal-type maximal inequality and the week mean dominating condition. On the one hand, we give the correct proof for the case p = 1 in Ko (2015 Ko, M.H. (2015). Complete moment convergence of moving average process generated by a class of random variables. J. Inequalities Appl. 2015(1):19. Article ID 225.[Crossref], [Web of Science ®] [Google Scholar]); on the other hand, we also consider the case αp = 1 which was not considered in Ko (2015 Ko, M.H. (2015). Complete moment convergence of moving average process generated by a class of random variables. J. Inequalities Appl. 2015(1):19. Article ID 225.[Crossref], [Web of Science ®] [Google Scholar]). The results obtained in this article generalize some corresponding ones for some dependent sequences.  相似文献   

7.
ABSTRACT

For widely dependent random variables, we present some results on the strong convergence of weighted sums, including results on almost surely (a.s.) and complete convergence. To this end, we verified some Borel–Cantelli lemmas of the widely dependent random variables. The above-mentioned random variables contain common negatively dependent random variables, some positively dependent random variables, and some others; therefore, the obtained results extend and improve some existing results.  相似文献   

8.
9.
In this paper, we establish the strong law of large numbers and complete convergence for non-identically distributed WOD random variables. We derive some new inequalities of Fuk–Nagaev type for the sums of non-identically distributed WD random variables. All these results further extend and refine previous ones.  相似文献   

10.
Abstract

In this paper, the complete convergence for maximal weighted sums of extended negatively dependent (END, for short) random variables is investigated. Some sufficient conditions for the complete convergence and some applications to a nonparametric model are provided. The results obtained in the paper generalize and improve the corresponding ones of Wang et al. (2014 Wang, X. J., X. Deng, L. L. Zheng, and S. H. Hu. 2014. Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications. A Journal of Theoretical and Applied Statistics 48(4):83450. [Google Scholar]b) and Shen, Xue, and Wang (2017 Shen, A., M. Xue, and W. Wang. 2017. Complete convergence for weighted sums of extended negatively dependent random variables. Communications in Statistics – Theory and Methods 46(3):143344.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]).  相似文献   

11.
ABSTRACT

In this article, a complete convergence result and a complete moment convergence result are obtained for the weighted sums of widely orthant dependent random variables under mild conditions. As corollaries, the corresponding results are also obtained under the extended negatively orthant dependent setup. In particular, the complete convergence result generalizes and improves the related known works in the literature.  相似文献   

12.
Abstract

In this paper, we consider convergence rates in the Marcinkiewicz–Zygmund law of the large numbers for the END linear processes with random coefficients. We extend some results of Baum and Katz (1965 Baum, L. E., and M. Katz. 1965. Convergence rates in the law of large numbers. Transactions of the American Mathematical Society 120 (1):10823. doi: 10.2307/1994170.[Crossref], [Web of Science ®] [Google Scholar]) to the case of dependent linear processes with the random coefficients.  相似文献   

13.
In this paper, some complete convergence and complete moment convergence results for arrays of rowwise negatively superadditive dependent (NSD, in short) random variables are studied. The obtained theorems not only extend the result of Gan and Chen (2007 Gan, S. X., and P. Y. Chen. 2007. On the limiting behavior of the maximum partial sums for arrays of rowwise NA random variables. Acta Mathematica Scientia. Series B 27 (2):28390.[Crossref], [Web of Science ®] [Google Scholar]) to the case of NSD random variables, but also improve them.  相似文献   

14.
For negatively associated (NA) random variables, we obtain two general strong laws of large numbers (SLLN) in which the coefficient of sum and the weight are both general functions. As corollaries, we obtain Marcinkiewicz-type SLLN, the logarithmic SLLN and Marcinkiewicz SLLN for NA random variables.  相似文献   

15.
In this article, the complete convergence for weighted sums of extended negatively dependent (END, in short) random variables without identical distribution is investigated. In addition, the complete moment convergence for weighted sums of END random variables is also obtained. As an application, the Baum–Katz type result for END random variables is established. The results obtained in the article extend the corresponding ones for independent random variables and some dependent random variables.  相似文献   

16.
Abstract

In this article, the complete convergence results of weighted sums for arrays of rowwise negatively orthant dependent (NOD) random variables are investigated. Some sufficient conditions for complete convergence for arrays of rowwise NOD random variables are presented without assumption of identical distribution.  相似文献   

17.
In this article, we study complete convergence theorems for weighted sums of negatively dependent random variables under the sub-linear expectations. Our results extend the corresponding results of Sung (2012 Sung, S. H. 2012. A note on the Complete convergence for weighted sums of negatively dependent random variables. Journal of Inequalities and Applications 2012:158, 10 pages. [Google Scholar]) relative to the classical probability.  相似文献   

18.
Let {Xn, n ? 1} be a sequence of asymptotically almost negatively associated (AANA, for short) random variables which is stochastically dominated by a random variable X, and {dni, 1 ? i ? n, n ? 1} be a sequence of real function, which is defined on a compact set E. Under some suitable conditions, we investigate some convergence properties for weighted sums of AANA random variables, especially the Lp convergence and the complete convergence. As an application, the Marcinkiewicz–Zygmund-type strong law of large numbers for AANA random variables is obtained.  相似文献   

19.
For testing goodness-of-fit in a k cell multinomial distribution having very small frequencies, the usual chi-square approximation to the upper tail of the likelihood ratio statistic, G2 is not satisfactory. A new adjustment to G2 is determined on the basis of analytical investigation in terms of asymptotic bias and variance of the adjusted G2 A Monte Carlo simulation is performed for several one-way tables to assess the adjustment of G2 in order to obtain a closer approximation to the nomial level of significance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号