首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Right‐censored and length‐biased failure time data arise in many fields including cross‐sectional prevalent cohort studies, and their analysis has recently attracted a great deal of attention. It is well‐known that for regression analysis of failure time data, two commonly used approaches are hazard‐based and quantile‐based procedures, and most of the existing methods are the hazard‐based ones. In this paper, we consider quantile regression analysis of right‐censored and length‐biased data and present a semiparametric varying‐coefficient partially linear model. For estimation of regression parameters, a three‐stage procedure that makes use of the inverse probability weighted technique is developed, and the asymptotic properties of the resulting estimators are established. In addition, the approach allows the dependence of the censoring variable on covariates, while most of the existing methods assume the independence between censoring variables and covariates. A simulation study is conducted and suggests that the proposed approach works well in practical situations. Also, an illustrative example is provided.  相似文献   

2.
Clinical trials involving multiple time‐to‐event outcomes are increasingly common. In this paper, permutation tests for testing for group differences in multivariate time‐to‐event data are proposed. Unlike other two‐sample tests for multivariate survival data, the proposed tests attain the nominal type I error rate. A simulation study shows that the proposed tests outperform their competitors when the degree of censored observations is sufficiently high. When the degree of censoring is low, it is seen that naive tests such as Hotelling's T2 outperform tests tailored to survival data. Computational and practical aspects of the proposed tests are discussed, and their use is illustrated by analyses of three publicly available datasets. Implementations of the proposed tests are available in an accompanying R package.  相似文献   

3.
The analysis of time‐to‐event data typically makes the censoring at random assumption, ie, that—conditional on covariates in the model—the distribution of event times is the same, whether they are observed or unobserved (ie, right censored). When patients who remain in follow‐up stay on their assigned treatment, then analysis under this assumption broadly addresses the de jure, or “while on treatment strategy” estimand. In such cases, we may well wish to explore the robustness of our inference to more pragmatic, de facto or “treatment policy strategy,” assumptions about the behaviour of patients post‐censoring. This is particularly the case when censoring occurs because patients change, or revert, to the usual (ie, reference) standard of care. Recent work has shown how such questions can be addressed for trials with continuous outcome data and longitudinal follow‐up, using reference‐based multiple imputation. For example, patients in the active arm may have their missing data imputed assuming they reverted to the control (ie, reference) intervention on withdrawal. Reference‐based imputation has two advantages: (a) it avoids the user specifying numerous parameters describing the distribution of patients' postwithdrawal data and (b) it is, to a good approximation, information anchored, so that the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. In this article, we build on recent work in the survival context, proposing a class of reference‐based assumptions appropriate for time‐to‐event data. We report a simulation study exploring the extent to which the multiple imputation estimator (using Rubin's variance formula) is information anchored in this setting and then illustrate the approach by reanalysing data from a randomized trial, which compared medical therapy with angioplasty for patients presenting with angina.  相似文献   

4.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

5.
The semi‐Markov process often provides a better framework than the classical Markov process for the analysis of events with multiple states. The purpose of this paper is twofold. First, we show that in the presence of right censoring, when the right end‐point of the support of the censoring time is strictly less than the right end‐point of the support of the semi‐Markov kernel, the transition probability of the semi‐Markov process is nonidentifiable, and the estimators proposed in the literature are inconsistent in general. We derive the set of all attainable values for the transition probability based on the censored data, and we propose a nonparametric inference procedure for the transition probability using this set. Second, the conventional approach to constructing confidence bands is not applicable for the semi‐Markov kernel and the sojourn time distribution. We propose new perturbation resampling methods to construct these confidence bands. Different weights and transformations are explored in the construction. We use simulation to examine our proposals and illustrate them with hospitalization data from a recent cancer survivor study. The Canadian Journal of Statistics 41: 237–256; 2013 © 2013 Statistical Society of Canada  相似文献   

6.
A copula model for bivariate survival data with hybrid censoring is proposed to study the association between survival time of individuals infected with HIV and persistence time of infection with an additional virus. Survival with HIV is right censored and the persistence time of the additional virus is subject to interval censoring case 1. A pseudo-likelihood method is developed to study the association between the two event times under such hybrid censoring. Asymptotic consistency and normality of the pseudo-likelihood estimator are established based on empirical process theory. Simulation studies indicate good performance of the estimator with moderate sample size. The method is applied to a motivating HIV study which investigates the effect of GB virus type C (GBV-C) co-infection on survival time of HIV infected individuals.  相似文献   

7.
Dose‐escalation trials commonly assume a homogeneous trial population to identify a single recommended dose of the experimental treatment for use in future trials. Wrongly assuming a homogeneous population can lead to a diluted treatment effect. Equally, exclusion of a subgroup that could in fact benefit from the treatment can cause a beneficial treatment effect to be missed. Accounting for a potential subgroup effect (ie, difference in reaction to the treatment between subgroups) in dose‐escalation can increase the chance of finding the treatment to be efficacious in a larger patient population. A standard Bayesian model‐based method of dose‐escalation is extended to account for a subgroup effect by including covariates for subgroup membership in the dose‐toxicity model. A stratified design performs well but uses available data inefficiently and makes no inferences concerning presence of a subgroup effect. A hypothesis test could potentially rectify this problem but the small sample sizes result in a low‐powered test. As an alternative, the use of spike and slab priors for variable selection is proposed. This method continually assesses the presence of a subgroup effect, enabling efficient use of the available trial data throughout escalation and in identifying the recommended dose(s). A simulation study, based on real trial data, was conducted and this design was found to be both promising and feasible.  相似文献   

8.
Length‐biased sampling data are often encountered in the studies of economics, industrial reliability, epidemiology, genetics and cancer screening. The complication of this type of data is due to the fact that the observed lifetimes suffer from left truncation and right censoring, where the left truncation variable has a uniform distribution. In the Cox proportional hazards model, Huang & Qin (Journal of the American Statistical Association, 107, 2012, p. 107) proposed a composite partial likelihood method which not only has the simplicity of the popular partial likelihood estimator, but also can be easily performed by the standard statistical software. The accelerated failure time model has become a useful alternative to the Cox proportional hazards model. In this paper, by using the composite partial likelihood technique, we study this model with length‐biased sampling data. The proposed method has a very simple form and is robust when the assumption that the censoring time is independent of the covariate is violated. To ease the difficulty of calculations when solving the non‐smooth estimating equation, we use a kernel smoothed estimation method (Heller; Journal of the American Statistical Association, 102, 2007, p. 552). Large sample results and a re‐sampling method for the variance estimation are discussed. Some simulation studies are conducted to compare the performance of the proposed method with other existing methods. A real data set is used for illustration.  相似文献   

9.
Over the past years, significant progress has been made in developing statistically rigorous methods to implement clinically interpretable sensitivity analyses for assumptions about the missingness mechanism in clinical trials for continuous and (to a lesser extent) for binary or categorical endpoints. Studies with time‐to‐event outcomes have received much less attention. However, such studies can be similarly challenged with respect to the robustness and integrity of primary analysis conclusions when a substantial number of subjects withdraw from treatment prematurely prior to experiencing an event of interest. We discuss how the methods that are widely used for primary analyses of time‐to‐event outcomes could be extended in a clinically meaningful and interpretable way to stress‐test the assumption of ignorable censoring. We focus on a ‘tipping point’ approach, the objective of which is to postulate sensitivity parameters with a clear clinical interpretation and to identify a setting of these parameters unfavorable enough towards the experimental treatment to nullify a conclusion that was favorable to that treatment. Robustness of primary analysis results can then be assessed based on clinical plausibility of the scenario represented by the tipping point. We study several approaches for conducting such analyses based on multiple imputation using parametric, semi‐parametric, and non‐parametric imputation models and evaluate their operating characteristics via simulation. We argue that these methods are valuable tools for sensitivity analyses of time‐to‐event data and conclude that the method based on piecewise exponential imputation model of survival has some advantages over other methods studied here. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The area between two survival curves is an intuitive test statistic for the classical two‐sample testing problem. We propose a bootstrap version of it for assessing the overall homogeneity of these curves. Our approach allows ties in the data as well as independent right censoring, which may differ between the groups. The asymptotic distribution of the test statistic as well as of its bootstrap counterpart are derived under the null hypothesis, and their consistency is proven for general alternatives. We demonstrate the finite sample superiority of the proposed test over some existing methods in a simulation study and illustrate its application by a real‐data example.  相似文献   

11.
We consider hypothesis testing problems for low‐dimensional coefficients in a high dimensional additive hazard model. A variance reduced partial profiling estimator (VRPPE) is proposed and its asymptotic normality is established, which enables us to test the significance of each single coefficient when the data dimension is much larger than the sample size. Based on the p‐values obtained from the proposed test statistics, we then apply a multiple testing procedure to identify significant coefficients and show that the false discovery rate can be controlled at the desired level. The proposed method is also extended to testing a low‐dimensional sub‐vector of coefficients. The finite sample performance of the proposed testing procedure is evaluated by simulation studies. We also apply it to two real data sets, with one focusing on testing low‐dimensional coefficients and the other focusing on identifying significant coefficients through the proposed multiple testing procedure.  相似文献   

12.
We consider a regression analysis of longitudinal data in the presence of outcome‐dependent observation times and informative censoring. Existing approaches commonly require a correct specification of the joint distribution of longitudinal measurements, the observation time process, and informative censoring time under the joint modeling framework and can be computationally cumbersome due to the complex form of the likelihood function. In view of these issues, we propose a semiparametric joint regression model and construct a composite likelihood function based on a conditional order statistics argument. As a major feature of our proposed methods, the aforementioned joint distribution is not required to be specified, and the random effect in the proposed joint model is treated as a nuisance parameter. Consequently, the derived composite likelihood bypasses the need to integrate over the random effect and offers the advantage of easy computation. We show that the resulting estimators are consistent and asymptotically normal. We use simulation studies to evaluate the finite‐sample performance of the proposed method and apply it to a study of weight loss data that motivated our investigation.  相似文献   

13.
Patient heterogeneity may complicate dose‐finding in phase 1 clinical trials if the dose‐toxicity curves differ between subgroups. Conducting separate trials within subgroups may lead to infeasibly small sample sizes in subgroups having low prevalence. Alternatively,it is not obvious how to conduct a single trial while accounting for heterogeneity. To address this problem,we consider a generalization of the continual reassessment method on the basis of a hierarchical Bayesian dose‐toxicity model that borrows strength between subgroups under the assumption that the subgroups are exchangeable. We evaluate a design using this model that includes subgroup‐specific dose selection and safety rules. A simulation study is presented that includes comparison of this method to 3 alternative approaches,on the basis of nonhierarchical models,that make different types of assumptions about within‐subgroup dose‐toxicity curves. The simulations show that the hierarchical model‐based method is recommended in settings where the dose‐toxicity curves are exchangeable between subgroups. We present practical guidelines for application and provide computer programs for trial simulation and conduct.  相似文献   

14.
The study of differences among groups is an interesting statistical topic in many applied fields. It is very common in this context to have data that are subject to mechanisms of loss of information, such as censoring and truncation. In the setting of a two‐sample problem with data subject to left truncation and right censoring, we develop an empirical likelihood method to do inference for the relative distribution. We obtain a nonparametric generalization of Wilks' theorem and construct nonparametric pointwise confidence intervals for the relative distribution. Finally, we analyse the coverage probability and length of these confidence intervals through a simulation study and illustrate their use with a real data set on gastric cancer. The Canadian Journal of Statistics 38: 453–473; 2010 © 2010 Statistical Society of Canada  相似文献   

15.
Mean survival time is often of inherent interest in medical and epidemiologic studies. In the presence of censoring and when covariate effects are of interest, Cox regression is the strong default, but mostly due to convenience and familiarity. When survival times are uncensored, covariate effects can be estimated as differences in mean survival through linear regression. Tobit regression can validly be performed through maximum likelihood when the censoring times are fixed (ie, known for each subject, even in cases where the outcome is observed). However, Tobit regression is generally inapplicable when the response is subject to random right censoring. We propose Tobit regression methods based on weighted maximum likelihood which are applicable to survival times subject to both fixed and random censoring times. Under the proposed approach, known right censoring is handled naturally through the Tobit model, with inverse probability of censoring weighting used to overcome random censoring. Essentially, the re‐weighting data are intended to represent those that would have been observed in the absence of random censoring. We develop methods for estimating the Tobit regression parameter, then the population mean survival time. A closed form large‐sample variance estimator is proposed for the regression parameter estimator, with a semiparametric bootstrap standard error estimator derived for the population mean. The proposed methods are easily implementable using standard software. Finite‐sample properties are assessed through simulation. The methods are applied to a large cohort of patients wait‐listed for kidney transplantation.  相似文献   

16.
Abstract. In this article, we develop a test for the null hypothesis that a real‐valued function belongs to a given parametric set against the non‐parametric alternative that it is monotone, say decreasing. The method is described in a general model that covers the monotone density model, the monotone regression and the right‐censoring model with monotone hazard rate. The criterion for testing is an ‐distance between a Grenander‐type non‐parametric estimator and a parametric estimator computed under the null hypothesis. A normalized version of this distance is shown to have an asymptotic normal distribution under the null, whence a test can be developed. Moreover, a bootstrap procedure is shown to be consistent to calibrate the test.  相似文献   

17.
Independent censoring is commonly assumed in survival analysis. However, it may be questionable when censoring is related to event time. We model the event and censoring time marginally through accelerated failure time models, and model their association by a known copula. An iteration algorithm is proposed to estimate the regression parameters. Simulation results show the improvement of the proposed method compared to the naive method under independent censoring. Sensitivity analysis gives the evidences that the proposed method can obtain reasonable estimates even when the forms of copula are misspecified. We illustrate its application by analyzing prostate cancer data.  相似文献   

18.
The author considers time‐to‐event data from case‐cohort designs. As existing methods are either inefficient or based on restrictive assumptions concerning the censoring mechanism, he proposes a semi‐parametrically efficient estimator under the usual assumptions for Cox regression models. The estimator in question is obtained by a one‐step Newton‐Raphson approximation that solves the efficient score equations with initial value obtained from an existing method. The author proves that the estimator is consistent, asymptotically efficient and normally distributed in the limit. He also resorts to simulations to show that the proposed estimator performs well in finite samples and that it considerably improves the efficiency of existing pseudo‐likelihood estimators when a correlate of the missing covariate is available. Although he focuses on the situation where covariates are discrete, the author also explores how the method can be applied to models with continuous covariates.  相似文献   

19.
Abstract. Estimators based on data‐driven generalized weighted Cramér‐von Mises distances are defined for data that are subject to a possible right censorship. The function used to measure the distance between the data, summarized by the Kaplan–Meier estimator, and the target model is allowed to depend on the sample size and, for example, on the number of censored items. It is shown that the estimators are consistent and asymptotically multivariate normal for every p dimensional parametric family fulfiling some mild regularity conditions. The results are applied to finite mixtures. Simulation results for finite mixtures indicate that the estimators are useful for moderate sample sizes. Furthermore, the simulation results reveal the usefulness of sample size dependent and censoring sensitive distance functions for moderate sample sizes. Moreover, the estimators for the mixing proportion seem to be fairly robust against a ‘symmetric’ contamination model even when censoring is present.  相似文献   

20.
Length‐biased and right‐censored failure time data arise from many fields, and their analysis has recently attracted a great deal of attention. Two examples of the areas that often produce such data are epidemiological studies and cancer screening trials. In this paper, we discuss regression analysis of such data in the presence of missing covariates, for which no established inference procedure seems to exist. For the problem, we consider the data arising from the proportional hazards model and propose two inverse probability weighted estimation procedures. The asymptotic properties of the resulting estimators are established, and the extensive simulation study conducted for the evaluation of the proposed methods suggests that they work well for practical situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号