首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Empirical Likelihood-based Inference in Linear Models with Missing Data   总被引:18,自引:0,他引:18  
The missing response problem in linear regression is studied. An adjusted empirical likelihood approach to inference on the mean of the response variable is developed. A non-parametric version of Wilks's theorem for the adjusted empirical likelihood is proved, and the corresponding empirical likelihood confidence interval for the mean is constructed. With auxiliary information, an empirical likelihood-based estimator with asymptotic normality is defined and an adjusted empirical log-likelihood function with asymptotic χ2 is derived. A simulation study is conducted to compare the adjusted empirical likelihood methods and the normal approximation methods in terms of coverage accuracies and average lengths of the confidence intervals. Based on biases and standard errors, a comparison is also made between the empirical likelihood-based estimator and related estimators by simulation. Our simulation indicates that the adjusted empirical likelihood methods perform competitively and the use of auxiliary information provides improved inferences.  相似文献   

2.
Abstract.  A kernel regression imputation method for missing response data is developed. A class of bias-corrected empirical log-likelihood ratios for the response mean is defined. It is shown that any member of our class of ratios is asymptotically chi-squared, and the corresponding empirical likelihood confidence interval for the response mean is constructed. Our ratios share some of the desired features of the existing methods: they are self-scale invariant and no plug-in estimators for the adjustment factor and asymptotic variance are needed; when estimating the non-parametric function in the model, undersmoothing to ensure root- n consistency of the estimator for the parameter is avoided. Since the range of bandwidths contains the optimal bandwidth for estimating the regression function, the existing data-driven algorithm is valid for selecting an optimal bandwidth. We also study the normal approximation-based method. A simulation study is undertaken to compare the empirical likelihood with the normal approximation method in terms of coverage accuracies and average lengths of confidence intervals.  相似文献   

3.
Investigators often gather longitudinal data to assess changes in responses over time within subjects and to relate these changes to within‐subject changes in predictors. Missing data are common in such studies and predictors can be correlated with subject‐specific effects. Maximum likelihood methods for generalized linear mixed models provide consistent estimates when the data are ‘missing at random’ (MAR) but can produce inconsistent estimates in settings where the random effects are correlated with one of the predictors. On the other hand, conditional maximum likelihood methods (and closely related maximum likelihood methods that partition covariates into between‐ and within‐cluster components) provide consistent estimation when random effects are correlated with predictors but can produce inconsistent covariate effect estimates when data are MAR. Using theory, simulation studies, and fits to example data this paper shows that decomposition methods using complete covariate information produce consistent estimates. In some practical cases these methods, that ostensibly require complete covariate information, actually only involve the observed covariates. These results offer an easy‐to‐use approach to simultaneously protect against bias from both cluster‐level confounding and MAR missingness in assessments of change.  相似文献   

4.
缺失偏态数据下线性回归模型的统计推断   总被引:1,自引:2,他引:1  
研究缺失偏态数据下线性回归模型的参数估计问题,针对缺失偏态数据,为克服样本分布扭曲缺点和提高模型的回归系数、尺度参数和偏度参数的估计效果,提出了一种适合偏态数据下线性回归模型中缺失数据的修正回归插补方法.通过随机模拟和实例研究,并与均值插补、回归插补、随机回归插补方法比较,结果表明所提出的修正回归插补方法是有效可行的.  相似文献   

5.
Suppose that we have a nonparametric regression model Y = m(X) + ε with XRp, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random. Based on the “complete” data sets for Y after nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression function m(x0) for fixed x0Rp are proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals for m(x0). We also construct an empirical likelihood (EL) statistic for m(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval for m(x0).  相似文献   

6.
There are many situations in which a researcher would like to analyse data from a two‐way layout. Often, the assumptions of linearity and normality may not hold. To address such situations, we introduce a semiparametric model. The model extends the well‐known density ratio model from the one‐way to the two‐way layout and provides a useful framework for semiparametric analysis of variance type problems under order restrictions. In particular, the likelihood ratio order is emphasized. The model enables highly efficient inference without resorting to fully parametric assumptions or the use of transformations. Estimation and testing procedures under order restrictions are developed and investigated in detail. It is shown that the model is robust to misspecification, and several simulations suggest that it performs well in practice. The methodology is illustrated using two data examples; in the first, the response variable is discrete, whereas in the second, it is continuous.  相似文献   

7.
Effective implementation of likelihood inference in models for high‐dimensional data often requires a simplified treatment of nuisance parameters, with these having to be replaced by handy estimates. In addition, the likelihood function may have been simplified by means of a partial specification of the model, as is the case when composite likelihood is used. In such circumstances tests and confidence regions for the parameter of interest may be constructed using Wald type and score type statistics, defined so as to account for nuisance parameter estimation or partial specification of the likelihood. In this paper a general analytical expression for the required asymptotic covariance matrices is derived, and suggestions for obtaining Monte Carlo approximations are presented. The same matrices are involved in a rescaling adjustment of the log likelihood ratio type statistic that we propose. This adjustment restores the usual chi‐squared asymptotic distribution, which is generally invalid after the simplifications considered. The practical implication is that, for a wide variety of likelihoods and nuisance parameter estimates, confidence regions for the parameters of interest are readily computable from the rescaled log likelihood ratio type statistic as well as from the Wald type and score type statistics. Two examples, a measurement error model with full likelihood and a spatial correlation model with pairwise likelihood, illustrate and compare the procedures. Wald type and score type statistics may give rise to confidence regions with unsatisfactory shape in small and moderate samples. In addition to having satisfactory shape, regions based on the rescaled log likelihood ratio type statistic show empirical coverage in reasonable agreement with nominal confidence levels.  相似文献   

8.
Let ( X , Y ) be a random vector, where Y denotes the variable of interest possibly subject to random right censoring, and X is a covariate. We construct confidence intervals and bands for the conditional survival and quantile function of Y given X using a non-parametric likelihood ratio approach. This approach was introduced by Thomas & Grunkemeier (1975 ), who estimated confidence intervals of survival probabilities based on right censored data. The method is appealing for several reasons: it always produces intervals inside [0, 1], it does not involve variance estimation, and can produce asymmetric intervals. Asymptotic results for the confidence intervals and bands are obtained, as well as simulation results, in which the performance of the likelihood ratio intervals and bands is compared with that of the normal approximation method. We also propose a bandwidth selection procedure based on the bootstrap and apply the technique on a real data set.  相似文献   

9.
Abstract.  Comparison of two samples can sometimes be conducted on the basis of analysis of receiver operating characteristic (ROC) curves. A variety of methods of point estimation and confidence intervals for ROC curves have been proposed and well studied. We develop smoothed empirical likelihood-based confidence intervals for ROC curves when the samples are censored and generated from semiparametric models. The resulting empirical log-likelihood function is shown to be asymptotically chi-squared. Simulation studies illustrate that the proposed empirical likelihood confidence interval is advantageous over the normal approximation-based confidence interval. A real data set is analysed using the proposed method.  相似文献   

10.
In this paper, we propose an estimation method when sample data are incomplete. We decompose the likelihood according to missing patterns and combine the estimators based on each likelihood weighting by the Fisher information ratio. This approach provides a simple way of estimating parameters, especially for non‐monotone missing data. Numerical examples are presented to illustrate this method.  相似文献   

11.
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods.  相似文献   

12.
利用经验似然方法,讨论缺失数据下广义线性模型中参数的置信域问题,得到了对数经验似然比统计量的渐近分布为标准卡方分布;给出参数的一些估计量及其渐近分布,利用数据模拟解释了所提出的方法。  相似文献   

13.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

14.
Subgroup detection has received increasing attention recently in different fields such as clinical trials, public management and market segmentation analysis. In these fields, people often face time‐to‐event data, which are commonly subject to right censoring. This paper proposes a semiparametric Logistic‐Cox mixture model for subgroup analysis when the interested outcome is event time with right censoring. The proposed method mainly consists of a likelihood ratio‐based testing procedure for testing the existence of subgroups. The expectation–maximization iteration is applied to improve the testing power, and a model‐based bootstrap approach is developed to implement the testing procedure. When there exist subgroups, one can also use the proposed model to estimate the subgroup effect and construct predictive scores for the subgroup membership. The large sample properties of the proposed method are studied. The finite sample performance of the proposed method is assessed by simulation studies. A real data example is also provided for illustration.  相似文献   

15.
The authors show how the genetic effect of a quantitative trait locus can be estimated by a nonparametric empirical likelihood method when the phenotype distributions are completely unspecified. They use an empirical likelihood ratio statistic for testing the genetic effect and obtaining confidence intervals. In addition to studying the asymptotic properties of these procedures, the authors present simulation results and illustrate their approach with a study on breast cancer resistance genes.  相似文献   

16.
为了研究缺失偏态数据下的联合位置与尺度模型,基于分布自身的特点,提出了一种适合缺失偏态数据下联合建模的插补方法———修正随机回归插补方法,该方法对缺失数据下模型偏度参数的调整十分显著。通过随机模拟和实例研究,并与回归插补和随机回归插补方法进行比较,结果表明,所提出的修正随机回归插补方法是有用和有效的。  相似文献   

17.
Linear increments (LI) are used to analyse repeated outcome data with missing values. Previously, two LI methods have been proposed, one allowing non‐monotone missingness but not independent measurement error and one allowing independent measurement error but only monotone missingness. In both, it was suggested that the expected increment could depend on current outcome. We show that LI can allow non‐monotone missingness and either independent measurement error of unknown variance or dependence of expected increment on current outcome but not both. A popular alternative to LI is a multivariate normal model ignoring the missingness pattern. This gives consistent estimation when data are normally distributed and missing at random (MAR). We clarify the relation between MAR and the assumptions of LI and show that for continuous outcomes multivariate normal estimators are also consistent under (non‐MAR and non‐normal) assumptions not much stronger than those of LI. Moreover, when missingness is non‐monotone, they are typically more efficient.  相似文献   

18.
This article is concerned with statistical inference of the partial linear isotonic regression model missing response and measurement errors in covariates. We proposed an empirical likelihood ratio test statistics and show that it has a limiting weighted chi-square distribution. An adjusted empirical likelihood ratio statistic, which is shown to have a limiting standard central chi-square distribution, is then proposed further. A maximum empirical likelihood estimator is also developed. A simulation study is conducted to examine the finite-sample property of proposed procedure.  相似文献   

19.
20.
The Cox‐Aalen model, obtained by replacing the baseline hazard function in the well‐known Cox model with a covariate‐dependent Aalen model, allows for both fixed and dynamic covariate effects. In this paper, we examine maximum likelihood estimation for a Cox‐Aalen model based on interval‐censored failure times with fixed covariates. The resulting estimator globally converges to the truth slower than the parametric rate, but its finite‐dimensional component is asymptotically efficient. Numerical studies show that estimation via a constrained Newton method performs well in terms of both finite sample properties and processing time for moderate‐to‐large samples with few covariates. We conclude with an application of the proposed methods to assess risk factors for disease progression in psoriatic arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号