首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
A mean residual life function (MRLF) is the remaining life expectancy of a subject who has survived to a certain time point. In the presence of covariates, regression models are needed to study the association between the MRLFs and covariates. If the survival time tends to be too long or the tail is not observed, the restricted mean residual life must be considered. In this paper, we propose the proportional restricted mean residual life model for fitting survival data under right censoring. For inference on the model parameters, martingale estimating equations are developed, and the asymptotic properties of the proposed estimators are established. In addition, a class of goodness-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and the approach is applied to a set of real life data collected from a randomized clinical trial.  相似文献   

2.
For right-censored survival data, the information that whether the observed time is survival or censoring time is frequently lost. This is the case for the competing risk data. In this article, we consider statistical inference for the right-censored survival data with censoring indicators missing at random under the proportional mean residual life model. Simple and augmented inverse probability weighted estimating equation approaches are developed, in which the nonmissingness probability and some unknown conditional expectations are estimated by the kernel smoothing technique. The asymptotic properties of all the proposed estimators are established, while extensive simulation studies demonstrate that our proposed methods perform well under the moderate sample size. At last, the proposed method is applied to a data set from a stage II breast cancer trial.  相似文献   

3.
This paper discusses regression analysis of panel count data with dependent observation and dropout processes. For the problem, a general mean model is presented that can allow both additive and multiplicative effects of covariates on the underlying point process. In addition, the proportional rates model and the accelerated failure time model are employed to describe possible covariate effects on the observation process and the dropout or follow‐up process, respectively. For estimation of regression parameters, some estimating equation‐based procedures are developed and the asymptotic properties of the proposed estimators are established. In addition, a resampling approach is proposed for estimating a covariance matrix of the proposed estimator and a model checking procedure is also provided. Results from an extensive simulation study indicate that the proposed methodology works well for practical situations, and it is applied to a motivating set of real data.  相似文献   

4.
We study a Bayesian analysis of the proportional hazards model with time‐varying coefficients. We consider two priors for time‐varying coefficients – one based on B‐spline basis functions and the other based on Gamma processes – and we use a beta process prior for the baseline hazard functions. We show that the two priors provide optimal posterior convergence rates (up to the term) and that the Bayes factor is consistent for testing the assumption of the proportional hazards when the two priors are used for an alternative hypothesis. In addition, adaptive priors are considered for theoretical investigation, in which the smoothness of the true function is assumed to be unknown, and prior distributions are assigned based on B‐splines.  相似文献   

5.
This paper considers residuals for time series regression. Despite much literature on visual diagnostics for uncorrelated data, there is little on the autocorrelated case. To examine various aspects of the fitted time series regression model, three residuals are considered. The fitted regression model can be checked using orthogonal residuals; the time series error model can be analysed using marginal residuals; and the white noise error component can be tested using conditional residuals. When used together, these residuals allow identification of outliers, model mis‐specification and mean shifts. Due to the sensitivity of conditional residuals to model mis‐specification, it is suggested that the orthogonal and marginal residuals be examined first.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号