首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental theorem in hypothesis testing is the Neyman‐Pearson (N‐P) lemma, which creates the most powerful test of simple hypotheses. In this article, we establish Bayesian framework of hypothesis testing, and extend the Neyman‐Pearson lemma to create the Bayesian most powerful test of general hypotheses, thus providing optimality theory to determine thresholds of Bayes factors. Unlike conventional Bayes tests, the proposed Bayesian test is able to control the type I error.  相似文献   

2.
Zero-inflated power series distribution is commonly used for modelling count data with extra zeros. Inflation at point zero has been investigated and several tests for zero inflation have been examined. However sometimes, inflation occurs at a point apart from zero. In this case, we say inflation occurs at an arbitrary point j. The j-inflation has been discussed less than zero inflation. In this paper, inflation at an arbitrary point j is studied with more details and a Bayesian test for detecting inflation at point j is presented. The Bayesian method is extended to inflation at arbitrary points i and j. The relationship between the distribution for inflation at point j, inflation at points i and j and missing value imputation is studied. It is shown how to obtain a proper estimate of the population variance if a mean-imputed missing at random data set is used. Some simulation studies are conducted and the proposed Bayesian test is applied on two real data sets.  相似文献   

3.
The purpose of this study is to highlight dangerous motorways via estimating the intensity of accidents and study its pattern across the UK motorway network. Two methods have been developed to achieve this aim. First, the motorway-specific intensity is estimated by using a homogeneous Poisson process. The heterogeneity across motorways is incorporated using two-level hierarchical models. The data structure is multilevel since each motorway consists of junctions that are joined by grouped segments. In the second method, the segment-specific intensity is estimated. The homogeneous Poisson process is used to model accident data within grouped segments but heterogeneity across grouped segments is incorporated using three-level hierarchical models. A Bayesian method via Markov Chain Monte Carlo is used to estimate the unknown parameters in the models and the sensitivity to the choice of priors is assessed. The performance of the proposed models is evaluated by a simulation study and an application to traffic accidents in 2016 on the UK motorway network. The deviance information criterion (DIC) and the widely applicable information criterion (WAIC) are employed to choose between models.  相似文献   

4.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

5.
Mixture of linear mixed-effects models has received considerable attention in longitudinal studies, including medical research, social science and economics. The inferential question of interest is often the identification of critical factors that affect the responses. We consider a Bayesian approach to select the important fixed and random effects in the finite mixture of linear mixed-effects models. To accomplish our goal, latent variables are introduced to facilitate the identification of influential fixed and random components and to classify the membership of observations in the longitudinal data. A spike-and-slab prior for the regression coefficients is adopted to sidestep the potential complications of highly collinear covariates and to handle large p and small n issues in the variable selection problems. Here we employ Markov chain Monte Carlo (MCMC) sampling techniques for posterior inferences and explore the performance of the proposed method in simulation studies, followed by an actual psychiatric data analysis concerning depressive disorder.  相似文献   

6.
Guimei Zhao 《Statistics》2017,51(3):609-614
In this paper, we deal with the hypothesis testing problems for the univariate linear calibration, where a normally distributed response variable and an explanatory variable are involved, and the observations of the response variable corresponding to known values of the explanatory variable are used for making inferences concerning a single unknown value of the explanatory variable. The uniformly most powerful unbiased tests for both one-sided and two-sided hypotheses are constructed and verified. The power behaviour of the proposed tests is numerically compared with that of the existing method, and simulations show that the proposed tests make the powers improved.  相似文献   

7.
Linear mixed models have been widely used to analyze repeated measures data which arise in many studies. In most applications, it is assumed that both the random effects and the within-subjects errors are normally distributed. This can be extremely restrictive, obscuring important features of within-and among-subject variations. Here, quantile regression in the Bayesian framework for the linear mixed models is described to carry out the robust inferences. We also relax the normality assumption for the random effects by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in the linear mixed models. For posterior inference, we propose a Gibbs sampling algorithm based on a mixture representation of the asymmetric Laplace distribution and multivariate skew-normal distribution. The procedures are demonstrated by both simulated and real data examples.  相似文献   

8.
Abstract

In this article we develop the minimax estimation approach of general linear models to the semiparametric linear models when the parameters are simultaneously constrained by an ellipsoid and linear restrictions. Combining sample information and prior constraints the minimax estimator is obtained and compared with partially least square estimator by theoretical and simulation methods.  相似文献   

9.
Summary.  Empirical Bayes techniques for normal theory shrinkage estimation are extended to generalized linear models in a manner retaining the original spirit of shrinkage estimation, which is to reduce risk. The investigation identifies two classes of simple, all-purpose prior distributions, which supplement such non-informative priors as Jeffreys's prior with mechanisms for risk reduction. One new class of priors is motivated as optimizers of a core component of asymptotic risk. The methodology is evaluated in a numerical exploration and application to an existing data set.  相似文献   

10.
We consider a non-centered parameterization of the standard random-effects model, which is based on the Cholesky decomposition of the variance-covariance matrix. The regression type structure of the non-centered parameterization allows us to use Bayesian variable selection methods for covariance selection. We search for a parsimonious variance-covariance matrix by identifying the non-zero elements of the Cholesky factors. With this method we are able to learn from the data for each effect whether it is random or not, and whether covariances among random effects are zero. An application in marketing shows a substantial reduction of the number of free elements in the variance-covariance matrix.  相似文献   

11.
Likelihood ratio considerations are used to derive uniform bounds on the acceptance and rejection regions of the family of locally most powerful randomization tests for a two-sample comparison of censored data, When applied to radioimmunoassay data, these bounds are close enough to permit effective decision making. The methodology extends to a wide class of testing problems.  相似文献   

12.
Cook (1986) presented the idea of local influence to study the sensitivity of inferences to model assumptions:introduce a vector δ of perturbations to the model; choose a discrepancy function D to measure differences between the original inference and the inference under the perturbed model; study the behavior of D near δ = 0, the original model, usually by taking derivatives. Johnson and Geisser (1983) measure influence in Bayesian inference by the Kullback-Leibler divergence between predictive distributions. I~IcCulloch (1989) is a synthesis of Cook and Johnson and Geisser, using Kullback-Leibler divergence between posterior or predictive distributions as the discrepancy function in Bayesian local influence analyses. We analyze a special case for which McCulloch gives the general theory; namely, the linear model with conjugate prior. We present specific formulae for local influence measures for 1) changes in the parameters of the gamma prior for the precision, 2) changes in the mean of the normal prior for the regression coefficients, 3) changes in the covariance matrix of the normal prior for the regression coefficients and 4) changes in the case weights. Our method is an easy way to find locally influential subsets of points without knowing in advance the sizes of the subsets. The techniques are illustrated with a regression example.  相似文献   

13.
The general mixed linear model, containing both the fixed and random effects, is considered. Using gamma priors for the variance components, the conditional posterior distributions of the fixed effects and the variance components, conditional on the random effects, are obtained. Using the normal approximation for the multiple t distribution, approximations are obtained for the posterior distributions of the variance components in infinite series form. The same approximation Is used to obtain closed expressions for the moments of the variance components. An example is considered to illustrate the procedure and a numerical study examines the closeness of the approximations.  相似文献   

14.
Generalized linear models are well-established generalizations of the linear models used for regression and analysis of variance. They allow flexible mean structures and general distributions, other than the linear link and normal response assumed in regression. Further enhancements using ideas from multivariate analysis improve power and precision by modelling dependencies between response variables. This paper focuses on the specific case of regression models for bivariate Bernoulli responses and investigates their analysis using a Bayesian approach. The important problem of renal arterial obstruction is considered, as a medical application of these models.  相似文献   

15.
Based on the Bayesian framework of utilizing a Gaussian prior for the univariate nonparametric link function and an asymmetric Laplace distribution (ALD) for the residuals, we develop a Bayesian treatment for the Tobit quantile single-index regression model (TQSIM). With the location-scale mixture representation of the ALD, the posterior inferences of the latent variables and other parameters are achieved via the Markov Chain Monte Carlo computation method. TQSIM broadens the scope of applicability of the Tobit models by accommodating nonlinearity in the data. The proposed method is illustrated by two simulation examples and a labour supply dataset.  相似文献   

16.
The authors propose methods for Bayesian inference for generalized linear models with missing covariate data. They specify a parametric distribution for the covariates that is written as a sequence of one‐dimensional conditional distributions. They propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. They examine the properties of the proposed prior and resulting posterior distributions. They also present a Bayesian criterion for comparing various models, and a calibration is derived for it. A detailed simulation is conducted and two real data sets are examined to demonstrate the methodology.  相似文献   

17.
We develop a new class of reference priors for linear models with general covariance structures. A general Markov chain Monte Carlo algorithm is also proposed for implementing the computation. We present several examples to demonstrate the results: Bayesian penalized spline smoothing, a Bayesian approach to bivariate smoothing for a spatial model, and prior specification for structural equation models.  相似文献   

18.
19.
The crossover trial design (AB/BA design) is often used to compare the effects of two treatments in medical science because it performs within‐subject comparisons, which increase the precision of a treatment effect (i.e., a between‐treatment difference). However, the AB/BA design cannot be applied in the presence of carryover effects and/or treatments‐by‐period interaction. In such cases, Balaam's design is a more suitable choice. Unlike the AB/BA design, Balaam's design inflates the variance of an estimate of the treatment effect, thereby reducing the statistical power of tests. This is a serious drawback of the design. Although the variance of parameter estimators in Balaam's design has been extensively studied, the estimators of the treatment effect to improve the inference have received little attention. If the estimate of the treatment effect is obtained by solving the mixed model equations, the AA and BB sequences are excluded from the estimation process. In this study, we develop a new estimator of the treatment effect and a new test statistic using the estimator. The aim is to improve the statistical inference in Balaam's design. Simulation studies indicate that the type I error of the proposed test is well controlled, and that the test is more powerful and has more suitable characteristics than other existing tests when interactions are substantial. The proposed test is also applied to analyze a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student-t, Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student-t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR. The newly developed procedures are illustrated with applications using real and simulated data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号