首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the problem of approximating a stochastic process Y = {Y(t: tT} with known and continuous covariance function R on the basis of finitely many observations Y(t 1,), …, Y(t n ). Dependent on the knowledge about the mean function, we use different approximations ? and measure their performance by the corresponding maximum mean squared error sub t∈T E(Y(t) ? ?(t))2. For a compact T ? ? p we prove sufficient conditions for the existence of optimal designs. For the class of covariance functions on T 2 = [0, 1]2 which satisfy generalized Sacks/Ylvisaker regularity conditions of order zero or are of product type, we construct sequences of designs for which the proposed approximations perform asymptotically optimal.  相似文献   

2.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

3.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

4.
5.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

6.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

7.
The supremum of random variables representing a sequence of rewards is of interest in establishing the existence of optimal stopping rules. Necessary and sufficient conditions are given for existence of moments of supn(Xn ? cn) and supn(Sn ? cn) where X1, X2, … are i.i.d. random variables, Sn = X1 + … + Xn, and cn = (nL(n))1/r, 0 < r < 2, L = 1, L = log, and L = log log. Following Cohn (1974), “rates of convergence” results are used in the proof.  相似文献   

8.
Let Sn = X1 + … + Xn, where X1,…, Xn are independent Bernoulli random variables. In this paper, we evaluate probability metrics of the Wasserstein type between the distribution of Sn and a Poisson distribution. Our results show that, if E(Sn) = O(1) and if the individual probabilities of success of the Xi's tend uniformly to zero, then the general rate of convergence of the above mentioned metrics to zero is O(∑ni = 1P2i). We also show that this rate is sharp and discuss applications of these results.  相似文献   

9.
Let X1,X2,… be independent and identically distributed nonnegative random variables with mean μ, and let Sn = X1 + … + Xn. For each λ > 0 and each n ≥ 1, let An be the interval [λnY, ∞), where γ > 1 is a constant. The number of times that Sn is in An is denoted by N. As λ tends to zero, the asymtotic behavior of N is studied. Specifically under suitable conditions, the expectation of N is shown to be (μλ?1)β + o(λ?β/2 where β = 1/(γ-1) and the variance of N is shown to be (μλ?1)β(βμ1)2σ2 + o(λ) where σ2 is the variance of Xn.  相似文献   

10.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

11.
In this paper, by considering a 2n-dimensional elliptically contoured random vector (XT,YT)T=(X1,…,Xn,Y1,…,Yn)T, we derive the exact joint distribution of linear combinations of concomitants of order statistics arising from X. Specifically, we establish a mixture representation for the distribution of the rth concomitant order statistic, and also for the joint distribution of the rth order statistic and its concomitant. We show that these distributions are indeed mixtures of multivariate unified skew-elliptical distributions. The two most important special cases of multivariate normal and multivariate t distributions are then discussed in detail. Finally, an application of the established results in an inferential problem is outlined.  相似文献   

12.
We consider a life testing experiment in whichn units are put on test, successive lifetimes (X 1,X 2) of both componentsC 1 andC 2 are recorded and the observation is terminated either at ther-th order statistic ofY i =Min(X 1i ,X 2i ),i=1,…,n i.e.Y (r) or a random timeT i whichever is reached first. This mixture of random censoring and type-II censoring schemes, we call as hybrid random censoring which is of wide use. We use this censoring scheme and obtain maximum likelihood estimation of the parameters and develop large sample tests in bivariate exponential (BVE) models proposed by Marshall-Olkin (1967), Block-Basu (1974), Freund (1961) and Preschan-Sullo (1974).  相似文献   

13.
This paper considers the general linear regression model yc = X1β+ut under the heteroscedastic structure E(ut) = 0, E(u2) =σ2- (Xtβ)2, E(ut us) = 0, tæs, t, s= 1, T. It is shown that any estimated GLS estimator for β is asymptotically equivalent to the GLS estimator under some regularity conditions. A three-step GLS estimator, which calls upon the assumption E(ut2) =s?2(X,β)2 for the estimation of the disturbance covariance matrix, is considered.  相似文献   

14.
Complete sets of orthogonal F-squares of order n = sp, where g is a prime or prime power and p is a positive integer have been constructed by Hedayat, Raghavarao, and Seiden (1975). Federer (1977) has constructed complete sets of orthogonal F-squares of order n = 4t, where t is a positive integer. We give a general procedure for constructing orthogonal F-squares of order n from an orthogonal array (n, k, s, 2) and an OL(s, t) set, where n is not necessarily a prime or prime power. In particular, we show how to construct sets of orthogonal F-squares of order n = 2sp, where s is a prime or prime power and p is a positive integer. These sets are shown to be near complete and approach complete sets as s and/or p become large. We have also shown how to construct orthogonal arrays by these methods. In addition, the best upper bound on the number t of orthogonal F(n, λ1), F(n, λ2), …, F(n, λ1) squares is given.  相似文献   

15.
For non-negative integral valued interchangeable random variables v1, v2,…,vn, Takács (1967, 70) has derived the distributions of the statistics ?n' ?1n' ?(c)n and ?(-c)n concerning the partial sums Nr = v1 + v2 + ··· + vrr = 1,…,n. This paper deals with the joint distributions of some other statistics viz., (α(c)n, δ(c)n, Zn), (β(c)n, Zn) and (β(-c)n, Zn) concerning the partial sums Nr = ε1 + ··· + εrr = 1,2,…,n, of geometric random variables ε1, ε2,…,εn.  相似文献   

16.
Let X be a po-normal random vector with unknown µ and unknown covariance matrix ∑ and let X be partitioned as X = (X (1), …, X (r))′ where X(j)is a subvector of X with dimension pjsuch that ∑r j=1Pj = P0. Some admissible tests are derived for testing H0: μ = 0 versus H1: μ ¦0 based on a sample drawn from the whole vector X of dimension p and r additional samples drawn from X(1), X(2), …, X(r) respectively, All (r+1) samples are assumed to be independent. The distribution of some of the tests' statistics involved are also derived.  相似文献   

17.
Assume that there are two types of insurance contracts in an insurance company, and the ith related claims are denoted by {Xij, j ? 1}, i = 1, 2. In this article, the asymptotic behaviors of precise large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j are investigated, and under several assumptions, some corresponding asymptotic formulas are obtained.  相似文献   

18.
Let T2 i=z′iS?1zi, i==,…k be correlated Hotelling's T2 statistics under normality. where z=(z′i,…,z′k)′ and nS are independently distributed as Nkp((O,ρ?∑) and Wishart distribution Wp(∑, n), respectively. The purpose of this paper is to study the distribution function F(x1,…,xk) of (T2 i,…,T2 k) when n is large. First we derive an asymptotic expansion of the characteristic function of (T2 i,…,T2 k) up to the order n?2. Next we give asymptotic expansions for (T2 i,…,T2 k) in two cases (i)ρ=Ik and (ii) k=2 by inverting the expanded characteristic function up to the orders n?2 and n?1, respectively. Our results can be applied to the distribution function of max (T2 i,…,T2 k) as a special case.  相似文献   

19.
In analyzing the lifetime properties of a coherent system, the concept of “signature” is a useful tool. Let T be the lifetime of a coherent system having n iid components. The signature of the system is a probability vector s=(s1, s2, …, sn), such that si=P(T=Xi:n), where, Xi:n, i=1, 2, …, n denote the ordered lifetimes of the components. In this note, we assume that the system is working at time t>0. We consider the conditional signature of the system as a vector in which the ith element is defined as pi(t)=P(T=Xi:n|T>t) and investigate its properties as a function of time.  相似文献   

20.
A random vector X = (X 1,…,X n ) is negatively associated if and only if for every pair of partitions X 1 = (X π(1),…,X π(k)), X 2 = (X π(k+1),…,X π(n)) of X , P( X 1 ? A, X 2 ? B) ≤ P( X 1 ? A)P( X 2 ? B) whenever A and B are open upper sets and π is any permutation of {1,…,n}. In this paper, we develop some of concepts of negative dependence, which are weaker than negative association but stronger than negative orthant dependence by requiring the above inequality to hold only for some upper sets A and B and applying the arguments in Shaked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号