首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of estimating the quantiles of a distribution function in a fixed design regression model in which the observations are subject to random right censoring. The quantile estimator is defined via a conditional Kaplan-Meier type estimator for the distribution at a given design point. We establish an a.s. asymptotic representation for this quantile estimator, from which we obtain its asymptotic normality. Because a complicated estimation procedure is necessary for estimating the asymptotic bias and variance, we use a resampling procedure, which provides us, via an asymptotic representation for the bootstrapped estimator, with an alternative for the normal approximation.  相似文献   

2.
The problem of simultaneous robust estimation of regression and scale parameters in the linear regression model is studied in the context of experimental design. Optimal M-estimates are given for a modified optimization problem of minimizing the asymptotic variances under bounded influence functions. This is done by reducing the multidimensional regression problem to the problem of estimating one-dimensional location and scale. For the location-scale case two subfamilies of optimal score functions are described in detail along with comparisons of the asymptotic variances and gross-error-sensitivities of the corresponding M-estimators. It turns out that, even for small gross-error-sensitivities, one of the subfamilies provides variances which are close to those of the nonrobust maximum likelihood estimators.  相似文献   

3.
Summary. A new estimator of the regression parameters is introduced in a multivariate multiple-regression model in which both the vector of explanatory variables and the vector of response variables are assumed to be random. The affine equivariant estimate matrix is constructed using the sign covariance matrix (SCM) where the sign concept is based on Oja's criterion function. The influence function and asymptotic theory are developed to consider robustness and limiting efficiencies of the SCM regression estimate. The estimate is shown to be consistent with a limiting multinormal distribution. The influence function, as a function of the length of the contamination vector, is shown to be linear in elliptic cases; for the least squares (LS) estimate it is quadratic. The asymptotic relative efficiencies with respect to the LS estimate are given in the multivariate normal as well as the t -distribution cases. The SCM regression estimate is highly efficient in the multivariate normal case and, for heavy-tailed distributions, it performs better than the LS estimate. Simulations are used to consider finite sample efficiencies with similar results. The theory is illustrated with an example.  相似文献   

4.
In this paper we will consider a linear regression model with the sequence of error terms following an autoregressive stationary process. The statistical properties of the maximum likelihood and least squares estimators of the regression parameters will be summarized. Then, it will be proved that, for some typical cases of the design matrix, both methods produce asymptotically equivalent estimators. These estimators are also asymptotically efficient. Such cases include the most commonly used models to describe trend and seasonality like polynomial trends, dummy variables and trigonometric polynomials. Further, a very convenient asymptotic formula for the covariance matrix will be derived. It will be illustrated through a brief simulation study that, for the simple linear trend model, the result applies even for sample sizes as small as 20.  相似文献   

5.
In this article, we employ a regression formulation to estimate the high-dimensional covariance matrix for a given network structure. Using prior information contained in the network relationships, we model the covariance as a polynomial function of the symmetric adjacency matrix. Accordingly, the problem of estimating a high-dimensional covariance matrix is converted to one of estimating low dimensional coefficients of the polynomial regression function, which we can accomplish using ordinary least squares or maximum likelihood. The resulting covariance matrix estimator based on the maximum likelihood approach is guaranteed to be positive definite even in finite samples. Under mild conditions, we obtain the theoretical properties of the resulting estimators. A Bayesian information criterion is also developed to select the order of the polynomial function. Simulation studies and empirical examples illustrate the usefulness of the proposed methods.  相似文献   

6.
Takemura and Sheena [A. Takemura, Y. Sheena, Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix, J. Multivariate Anal. 94 (2005) 271–299] derived the asymptotic joint distribution of the eigenvalues and the eigenvectors of a Wishart matrix when the population eigenvalues become infinitely dispersed. They also showed necessary conditions for an estimator of the population covariance matrix to be tail minimax for typical loss functions by calculating the asymptotic risk of the estimator. In this paper, we further examine those distributions and risks by means of an asymptotic expansion. We obtain the asymptotic expansion of the distribution function of relevant elements of the sample eigenvalues and eigenvectors. We also derive the asymptotic expansion of the risk function of a scale and orthogonally equivariant estimator with respect to Stein’s loss. As an application, we prove non-minimaxity of Stein’s and Haff’s estimators, which has been an open problem for a long time.  相似文献   

7.
After reading a few articles in the nonlinear econonetric literature one begins to notice that each discussion follows roughly the same lines as the classical treatment of maximum likelihood estimation. There are some technical problems having to do with simultaneously conditioning on the exogenous variables and subjecting the true parameter to a Pittman drift which prevent the use of the classical methods of proof but the basic impression of similarity is correct . An estimator – be it nonlinear least squares, three – stage nonlinear least squares, or whatever – is the solution of an optimization problem. And the objective function of the optimization problem can be treated as if it were the likelihood to derive the Wald test statistic, the likelihood ratio test statistic , and Rao's efficient score statistic. Their asymptotic null and non – null distributions can be found using arguments fairly similar to the classical maximum likelihood arguments. In this article we exploit these observations and unify much of the nonlinear econometric literature. That which escapes this unificationis that which has an objective function which is not twice continuously differentiable with respect to the parameters – minimum absolute deviations regression for example.

The model which generates the data need not bethe same as the model which was presumed to define the optimization problem. Thus, these results can be used to obtain the asymptotic behavior of inference procedures under specification error We think that this will prove to be the nost useful feature of the paper. For example, it i s not necessary toresortto Monte Carlo simulat ionto determine i f a Translog estimate of an elasticity of sub stitution obtained by nonlinear three-stage least squares is robust against a CES truestate of nature. The asymptotic approximations we give here w ill provide an analytic answer to the question, sufficiently accurate for most purposes.  相似文献   

8.
A new design criterion based on the condition number of an information matrix is proposed to construct optimal designs for linear models, and the resulting designs are called K-optimal designs. The relationship between exact and asymptotic K-optimal designs is derived. Since it is usually hard to find exact optimal designs analytically, we apply a simulated annealing algorithm to compute K-optimal design points on continuous design spaces. Specific issues are addressed to make the algorithm effective. Through exact designs, we can examine some properties of the K-optimal designs such as symmetry and the number of support points. Examples and results are given for polynomial regression models and linear models for fractional factorial experiments. In addition, K-optimal designs are compared with A-optimal and D-optimal designs for polynomial regression models, showing that K-optimal designs are quite similar to A-optimal designs.  相似文献   

9.
Regression parameter estimation in the Cox failure time model is considered when regression variables are subject to measurement error. Assuming that repeat regression vector measurements adhere to a classical measurement model, we can consider an ordinary regression calibration approach in which the unobserved covariates are replaced by an estimate of their conditional expectation given available covariate measurements. However, since the rate of withdrawal from the risk set across the time axis, due to failure or censoring, will typically depend on covariates, we may improve the regression parameter estimator by recalibrating within each risk set. The asymptotic and small sample properties of such a risk set regression calibration estimator are studied. A simple estimator based on a least squares calibration in each risk set appears able to eliminate much of the bias that attends the ordinary regression calibration estimator under extreme measurement error circumstances. Corresponding asymptotic distribution theory is developed, small sample properties are studied using computer simulations and an illustration is provided.  相似文献   

10.
The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with an autocorrelated error process. We introduce a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator. Moreover, we prove that the optimal design is robust with respect to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. Finally, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.  相似文献   

11.
This paper demonstrates how to plan a contingent valuation experiment to assess the value of ecologically produced clothes. First, an appropriate statistical model (the trinomial spike model) that describes the probability that a randomly selected individual will accept any positive bid, and if so, will accept the bid A, is defined. Secondly, an optimization criterion that is a function of the variances of the parameter estimators is chosen. However, the variances of the parameter estimators in this model depend on the true parameter values. Pilot study data are therefore used to obtain estimates of the parameter values and a locally optimal design is found. Because this design is only optimal given that the estimated parameter values are correct, a design that minimizes the maximum of the criterion function over a plausable parameter region (i.e. a minimax design) is then found.  相似文献   

12.
The present paper considers a family of ordinary ridge regression estimators in the linear regression model when the disturbances covariance matrix depends upon a few unknown parameters. An asymptotic expansion for the distribution of the ridge regression estimator is developed and under the quadratic loss function its asymptotic risk is compared with that of the feasible GLS estimator.  相似文献   

13.
The purpose of this paper is to address the optimal design of the step-stress accelerated degradation test (SSADT) issue when the degradation process of a product follows the inverse Gaussian (IG) process. For this design problem, an important task is to construct a link model to connect the degradation magnitudes at different stress levels. In this paper, a proportional degradation rate model is proposed to link the degradation paths of the SSADT with stress levels, in which the average degradation rate is proportional to an exponential function of the stress level. Two optimization problems about the asymptotic variances of the lifetime characteristics' estimators are investigated. The optimal settings including sample size, measurement frequency and the number of measurements for each stress level are determined by minimizing the two objective functions within a given budget constraint. As an example, the sliding metal wear data are used to illustrate the proposed model.  相似文献   

14.
This work is concerned with the estimation of multi-dimensional regression and the asymptotic behavior of the test involved in selecting models. The main problem with such models is that we need to know the covariance matrix of the noise to get an optimal estimator. We show in this article that if we choose to minimize the logarithm of the determinant of the empirical error covariance matrix, then we get an asymptotically optimal estimator. Moreover, under suitable assumptions, we show that this cost function leads to a very simple asymptotic law for testing the number of parameters of an identifiable and regular regression model. Numerical experiments confirm the theoretical results.  相似文献   

15.
The structured total least squares estimator, defined via a constrained optimization problem, is a generalization of the total least squares estimator when the data matrix and the applied correction satisfy given structural constraints. In the paper, an affine structure with additional assumptions is considered. In particular, Toeplitz and Hankel structured, noise free and unstructured blocks are allowed simultaneously in the augmented data matrix. An equivalent optimization problem is derived that has as decision variables only the estimated parameters. The cost function of the equivalent problem is used to prove consistency of the structured total least squares estimator. The results for the general affine structured multivariate model are illustrated by examples of special models. Modification of the results for block-Hankel/Toeplitz structures is also given. As a by-product of the analysis of the cost function, an iterative algorithm for the computation of the structured total least squares estimator is proposed.  相似文献   

16.
In this article, we consider robust designs for approximate polynomial regression models, by applying the theory of canonical moments. The design criterion, first given in Liu and Wiens (J. Statist. Planning Inference 64 (1997) 369), is to maximize the determinant of the information matrix subject to a side condition of bounding the bias arising from model misspecification. We give a new proof of, and extend, the main theorem in Liu and Wiens (op. cit.); in so doing we shed new light on the structure of this problem. New designs, with the further property of minimizing the generalized variance of the additional regression coefficients when an enlarged model is fitted, are derived and assessed. These provide additional robustness against uncertainty regarding the proper degree of the fitted polynomial response.  相似文献   

17.
In this paper, we investigate the problem of determining block designs which are optimal under type 1 optimality criteria within various classes of designs having υ treatments arranged in b blocks of size k. The solutions to two optimization problems are given which are related to a general result obtained by Cheng (1978) and which are useful in this investigation. As one application of the solutions obtained, the definition of a regular graph design given in Mitchell and John (1977) is extended to that of a semi-regular graph design and some sufficient conditions are derived for the existence of a semi-regular graph design which is optimal under a given type 1 criterion. A result is also given which shows how the sufficient conditions derived can be used to establish the optimality under a specific type 1 criterion of some particular types of semi- regular graph designs having both equal and unequal numbers of replicates. Finally,some sufficient conditions are obtained for the dual of an A- or D-optimal design to be A- or D-optimal within an appropriate class of dual designs.  相似文献   

18.
For linear models with one discrete factor and additive general regression term the problem of characterizing A-optimal design measures for inference on (i) treatment effects, (ii) the regression parameters and (iii) all parameters will be considered. In any of these problems product designs can be found which are optimal among all designs, and equal weigth 1/J may be given to each of the J levels of the discrete factor. For problem (i) and (ii) the allocation of the continuous factors for the regression term should follow a suitable optimal design for the corresponding pure regression model, whereas for problem (iii) this would not give an A-optimal product design. For this problem an equivalence theorem for A-optimal product designs will be given. An example will illustrate these results. Finally, by analyzing a model with two discrete factors it will be shown that for enlarged models the best product designs may not be A-optimal.  相似文献   

19.
We focus on the construction of confidence corridors for multivariate nonparametric generalized quantile regression functions. This construction is based on asymptotic results for the maximal deviation between a suitable nonparametric estimator and the true function of interest, which follow after a series of approximation steps including a Bahadur representation, a new strong approximation theorem, and exponential tail inequalities for Gaussian random fields. As a byproduct we also obtain multivariate confidence corridors for the regression function in the classical mean regression. To deal with the problem of slowly decreasing error in coverage probability of the asymptotic confidence corridors, which results in meager coverage for small sample sizes, a simple bootstrap procedure is designed based on the leading term of the Bahadur representation. The finite-sample properties of both procedures are investigated by means of a simulation study and it is demonstrated that the bootstrap procedure considerably outperforms the asymptotic bands in terms of coverage accuracy. Finally, the bootstrap confidence corridors are used to study the efficacy of the National Supported Work Demonstration, which is a randomized employment enhancement program launched in the 1970s. This article has supplementary materials online.  相似文献   

20.
This paper considers the problem of estimating a nonlinear statistical model subject to stochastic linear constraints among unknown parameters. These constraints represent prior information which originates from a previous estimation of the same model using an alternative database. One feature of this specification allows for the disign matrix of stochastic linear restrictions to be estimated. The mixed regression technique and the maximum likelihood approach are used to derive the estimator for both the model coefficients and the unknown elements of this design matrix. The proposed estimator whose asymptotic properties are studied, contains as a special case the conventional mixed regression estimator based on a fixed design matrix. A new test of compatibility between prior and sample information is also introduced. Thesuggested estimator is tested empirically with both simulated and actual marketing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号