首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present a Bayesian analysis of double seasonal autoregressive moving average models. We first consider the problem of estimating unknown lagged errors in the moving average part using non linear least squares method, and then using natural conjugate and Jeffreys’ priors we approximate the marginal posterior distributions to be multivariate t and gamma distributions for the model coefficients and precision, respectively. We evaluate the proposed Bayesian methodology using simulation study, and apply to real-world hourly electricity load data sets.  相似文献   

2.
In some fields, we are forced to work with missing data in multivariate time series. Unfortunately, the data analysis in this context cannot be carried out in the same way as in the case of complete data. To deal with this problem, a Bayesian analysis of multivariate threshold autoregressive models with exogenous inputs and missing data is carried out. In this paper, Markov chain Monte Carlo methods are used to obtain samples from the involved posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method in this class of multivariate process. The number of regimes is estimated using marginal likelihood or product parameter-space strategies.  相似文献   

3.
Lin  Tsung I.  Lee  Jack C.  Ni  Huey F. 《Statistics and Computing》2004,14(2):119-130
A finite mixture model using the multivariate t distribution has been shown as a robust extension of normal mixtures. In this paper, we present a Bayesian approach for inference about parameters of t-mixture models. The specifications of prior distributions are weakly informative to avoid causing nonintegrable posterior distributions. We present two efficient EM-type algorithms for computing the joint posterior mode with the observed data and an incomplete future vector as the sample. Markov chain Monte Carlo sampling schemes are also developed to obtain the target posterior distribution of parameters. The advantages of Bayesian approach over the maximum likelihood method are demonstrated via a set of real data.  相似文献   

4.
5.
In this article, we highlight some interesting facts about Bayesian variable selection methods for linear regression models in settings where the design matrix exhibits strong collinearity. We first demonstrate via real data analysis and simulation studies that summaries of the posterior distribution based on marginal and joint distributions may give conflicting results for assessing the importance of strongly correlated covariates. The natural question is which one should be used in practice. The simulation studies suggest that posterior inclusion probabilities and Bayes factors that evaluate the importance of correlated covariates jointly are more appropriate, and some priors may be more adversely affected in such a setting. To obtain a better understanding behind the phenomenon, we study some toy examples with Zellner’s g-prior. The results show that strong collinearity may lead to a multimodal posterior distribution over models, in which joint summaries are more appropriate than marginal summaries. Thus, we recommend a routine examination of the correlation matrix and calculation of the joint inclusion probabilities for correlated covariates, in addition to marginal inclusion probabilities, for assessing the importance of covariates in Bayesian variable selection.  相似文献   

6.
Bivariate count data arise in several different disciplines (epidemiology, marketing, sports statistics just to name a few) and the bivariate Poisson distribution being a generalization of the Poisson distribution plays an important role in modelling such data. In the present paper we present a Bayesian estimation approach for the parameters of the bivariate Poisson model and provide the posterior distributions in closed forms. It is shown that the joint posterior distributions are finite mixtures of conditionally independent gamma distributions for which their full form can be easily deduced by a recursively updating scheme. Thus, the need of applying computationally demanding MCMC schemes for Bayesian inference in such models will be removed, since direct sampling from the posterior will become available, even in cases where the posterior distribution of functions of the parameters is not available in closed form. In addition, we define a class of prior distributions that possess an interesting conjugacy property which extends the typical notion of conjugacy, in the sense that both prior and posteriors belong to the same family of finite mixture models but with different number of components. Extension to certain other models including multivariate models or models with other marginal distributions are discussed.  相似文献   

7.
Using local kappa coefficients, we develop a method to assess the agreement between two discrete survival times that are measured on the same subject by different raters or methods. We model the marginal distributions for the two event times and local kappa coefficients in terms of covariates. An estimating equation is used for modeling the marginal distributions and a pseudo-likelihood procedure is used to estimate the parameters in the kappa model. The performance of the estimation procedure is examined through simulations. The proposed method can be extended to multivariate discrete survival distributions.  相似文献   

8.
A Multivariate Model for Repeated Failure Time Measurements   总被引:1,自引:1,他引:0  
A parametric multivariate failure time distribution is derived from a frailty-type model with a particular frailty distribution. It covers as special cases certain distributions which have been used for multivariate survival data in recent years. Some properties of the distribution are derived: its marginal and conditional distributions lie within the parametric family, and association between the component variates can be positive or, to a limited extent, negative. The simple closed form of the survivor function is useful for right-censored data, as occur commonly in survival analysis, and for calculating uniform residuals. Also featured is the distribution of ratios of paired failure times. The model is applied to data from the literature  相似文献   

9.
We consider Bayesian analysis of threshold autoregressive moving average model with exogenous inputs (TARMAX). In order to obtain the desired marginal posterior distributions of all parameters including the threshold value of the two-regime TARMAX model, we use two different Markov chain Monte Carlo (MCMC) methods to apply Gibbs sampler with Metropolis-Hastings algorithm. The first one is used to obtain iterative least squares estimates of the parameters. The second one includes two MCMC stages for estimate the desired marginal posterior distributions and the parameters. Simulation experiments and a real data example show support to our approaches.  相似文献   

10.
Copula, marginal distributions and model selection: a Bayesian note   总被引:3,自引:0,他引:3  
Copula functions and marginal distributions are combined to produce multivariate distributions. We show advantages of estimating all parameters of these models using the Bayesian approach, which can be done with standard Markov chain Monte Carlo algorithms. Deviance-based model selection criteria are also discussed when applied to copula models since they are invariant under monotone increasing transformations of the marginals. We focus on the deviance information criterion. The joint estimation takes into account all dependence structure of the parameters’ posterior distributions in our chosen model selection criteria. Two Monte Carlo studies are conducted to show that model identification improves when the model parameters are jointly estimated. We study the Bayesian estimation of all unknown quantities at once considering bivariate copula functions and three known marginal distributions.  相似文献   

11.
Multivariate failure time data arise when the sample consists of clusters and each cluster contains several possibly dependent failure times. The Clayton–Oakes model (Clayton, 1978; Oakes, 1982) for multivariate failure times characterizes the intracluster dependence parametrically but allows arbitrary specification of the marginal distributions. In this paper, we discuss estimation in the Clayton–Oakes model when the marginal distributions are modeled to follow the Cox (1972) proportional hazards regression model. Parameter estimation is based on an approximate generalized maximum likelihood estimator. We illustrate the model's application with example datasets.  相似文献   

12.
ABSTRACT

In this paper, we consider an effective Bayesian inference for censored Student-t linear regression model, which is a robust alternative to the usual censored Normal linear regression model. Based on the mixture representation of the Student-t distribution, we propose a non-iterative Bayesian sampling procedure to obtain independently and identically distributed samples approximately from the observed posterior distributions, which is different from the iterative Markov Chain Monte Carlo algorithm. We conduct model selection and influential analysis using the posterior samples to choose the best fitted model and to detect latent outliers. We illustrate the performance of the procedure through simulation studies, and finally, we apply the procedure to two real data sets, one is the insulation life data with right censoring and the other is the wage rates data with left censoring, and we get some interesting results.  相似文献   

13.
This paper considers the analysis of multivariate survival data where the marginal distributions are specified by semiparametric transformation models, a general class including the Cox model and the proportional odds model as special cases. First, consideration is given to the situation where the joint distribution of all failure times within the same cluster is specified by the Clayton–Oakes model (Clayton, Biometrika 65:141–151, l978; Oakes, J R Stat Soc B 44:412–422, 1982). A two-stage estimation procedure is adopted by first estimating the marginal parameters under the independence working assumption, and then the association parameter is estimated from the maximization of the full likelihood function with the estimators of the marginal parameters plugged in. The asymptotic properties of all estimators in the semiparametric model are derived. For the second situation, the third and higher order dependency structures are left unspecified, and interest focuses on the pairwise correlation between any two failure times. Thus, the pairwise association estimate can be obtained in the second stage by maximizing the pairwise likelihood function. Large sample properties for the pairwise association are also derived. Simulation studies show that the proposed approach is appropriate for practical use. To illustrate, a subset of the data from the Diabetic Retinopathy Study is used.  相似文献   

14.
This paper considers the Bayesian analysis of the multivariate normal distribution when its covariance matrix has a Wishart prior density under the assumption of a multivariate quadratic loss function. New flexible marginal posterior distributions of the mean μ and of the covariance matrix Σ are developed and univariate cases with graphical representations are given.  相似文献   

15.
Multivariate extreme events are typically modelled using multivariate extreme value distributions. Unfortunately, there exists no finite parametrization for the class of multivariate extreme value distributions. One common approach is to model extreme events using some flexible parametric subclass. This approach has been limited to only two or three dimensions, primarily because suitably flexible high-dimensional parametric models have prohibitively complex density functions. We present an approach that allows a number of popular flexible models to be used in arbitrarily high dimensions. The approach easily handles missing and censored data, and can be employed when modelling componentwise maxima and multivariate threshold exceedances. The approach is based on a representation using conditionally independent marginal components, conditioning on positive stable random variables. We use Bayesian inference, where the conditioning variables are treated as auxiliary variables within Markov chain Monte Carlo simulations. We demonstrate these methods with an application to sea-levels, using data collected at 10 sites on the east coast of England.  相似文献   

16.
This paper aims at introducing a Bayesian robust error-in-variable regression model in which the dependent variable is censored. We extend previous works by assuming a multivariate t distribution for jointly modelling the behaviour of the errors and the latent explanatory variable. Inference is done under the Bayesian paradigm. We use a data augmentation approach and develop a Markov chain Monte Carlo algorithm to sample from the posterior distributions. We run a Monte Carlo study to evaluate the efficiency of the posterior estimators in different settings. We compare the proposed model to three other models previously discussed in the literature. As a by-product we also provide a Bayesian analysis of the t-tobit model. We fit all four models to analyse the 2001 Medical Expenditure Panel Survey data.  相似文献   

17.
We consider a Bayesian analysis method of paired survival data using a bivariate exponential model proposed by Moran (1967, Biometrika 54:385–394). Important features of Moran’s model include that the marginal distributions are exponential and the range of the correlation coefficient is between 0 and 1. These contrast with the popular exponential model with gamma frailty. Despite these nice properties, statistical analysis with Moran’s model has been hampered by lack of a closed form likelihood function. In this paper, we introduce a latent variable to circumvent the difficulty in the Bayesian computation. We also consider a model checking procedure using the predictive Bayesian P-value.  相似文献   

18.
ABSTRACT

This paper proposes a hysteretic autoregressive model with GARCH specification and a skew Student's t-error distribution for financial time series. With an integrated hysteresis zone, this model allows both the conditional mean and conditional volatility switching in a regime to be delayed when the hysteresis variable lies in a hysteresis zone. We perform Bayesian estimation via an adaptive Markov Chain Monte Carlo sampling scheme. The proposed Bayesian method allows simultaneous inferences for all unknown parameters, including threshold values and a delay parameter. To implement model selection, we propose a numerical approximation of the marginal likelihoods to posterior odds. The proposed methodology is illustrated using simulation studies and two major Asia stock basis series. We conduct a model comparison for variant hysteresis and threshold GARCH models based on the posterior odds ratios, finding strong evidence of the hysteretic effect and some asymmetric heavy-tailness. Versus multi-regime threshold GARCH models, this new collection of models is more suitable to describe real data sets. Finally, we employ Bayesian forecasting methods in a Value-at-Risk study of the return series.  相似文献   

19.
This investigation considers a general linear model which changes parameters exactly once during the observation period. Assuming all the parameters are unknown and a proper prior distribution, the Bayesian predictive distribution of the future observations is derived.

It is shown that the predictive distribution is a mixture of multivariate t distributions and that the mixing distribution is the marginal posterior mass function of the change point parameter.  相似文献   

20.
Consider the problem of inference about a parameter θ in the presence of a nuisance parameter v. In a Bayesian framework, a number of posterior distributions may be of interest, including the joint posterior of (θ, ν), the marginal posterior of θ, and the posterior of θ conditional on different values of ν. The interpretation of these various posteriors is greatly simplified if a transformation (θ, h(θ, ν)) can be found so that θ and h(θ, v) are approximately independent. In this article, we consider a graphical method for finding this independence transformation, motivated by techniques from exploratory data analysis. Some simple examples of the use of this method are given and some of the implications of this approximate independence in a Bayesian analysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号