首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We consider the properties of the trimmed mean, as regards minimax-variance L-estimation of a location parameter in a Kolmogorov neighbourhood K() of the normal distribution: We first review some results on the search for an L-minimax estimator in this neighbourhood, i.e. a linear combination of order statistics whose maximum variance in Kt() is a minimum in the class of L-estimators. The natural candidate – the L-estimate which is efficient for that member of Kt,() with minimum Fisher information – is known not to be a saddlepoint solution to the minimax problem. We show here that it is not a solution at all. We do this by showing that a smaller maximum variance is attained by an appropriately trimmed mean. We argue that this trimmed mean, as well as being computationally simple – much simpler than the efficient L-estimate referred to above, and simpler than the minimax M- and R-estimators – is at least “nearly” minimax.  相似文献   

2.
In the location-scale estimation problem, we study robustness properties of M-estimators of the scale parameter under unknown ?-contamination of a fixed symmetric unimodal error distribution F0. Within a general class of M-estimators, the estimator with minimax asymptotic bias is shown to lie within the subclass of α-interquantile ranges of the empirical distribution symmetrized about the sample median. Our main result is that as ? → 0, the limiting minimax asymptotic bias estimator is sometimes (e.g., when Fo is Cauchy), but not always, the median absolute deviation about the median. It is also shown that contamination in the neighbourhood of a discontinuity of the influence function of a minimax bias estimator can sometimes inflate the asymptotic variance beyond that achieved by placing all the ?-contamination at infinity. This effect is quantified by a new notion of asymptotic efficiency that takes into account the effect of infinitesimal contamination of the parametric model for the error distribution.  相似文献   

3.
We study the efficiency properties of the goodness-of-fit test based on the Q n statistic introduced in Fortiana and Grané [Goodness-of-fit tests based on maximum correlations and their orthogonal decompositions, J. R. Stat. Soc. B 65 (2003), pp. 115–126] using the concepts of Bahadur asymptotic relative efficiency and Bahadur asymptotic optimality. We compare the test based on this statistic with those based on the Kolmogorov–Smirnov, the Cramér-von Mises criterion and the Anderson–Darling statistics. We also describe the distribution families for which the test based on Q n is locally asymptotically optimal in the Bahadur sense and, as an application, we use this test to detect the presence of hidden periodicities in a stationary time series.  相似文献   

4.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

5.
6.
Some asymptotic expansions not necessarily related to the central limit theorem are studied. We first observe that the smoothing inequality of Esseen implies the proximity, in the Kolmogorov distance sense, of the distributions of the random variables of two random sequences satisfying a sort of general asymptotic relation. We then present several instances of this observation. A first example, partially motivated by the the statistical theory of high precision measurements, is given by a uniform asymptotic approximation to (g(X + μ n )) n∈?, where g is some smooth function, X is a random variable and (μ n ) n∈? is a sequence going to infinity; a multivariate version is also stated and proved. We finally present a second class of examples given by a randomization of the interesting parameter in some classical asymptotic formulas; namely, a generic Laplace's type integral, randomized by the sequence (μ n X) n∈?, X being a Gamma distributed random variable.  相似文献   

7.
Data which is grouped and truncated is considered. We are given numbers n1<…<nk=n and we observe Xni ),i=1,…k, and the tottal number of observations available (N> nk is unknown. If the underlying distribution has one unknown parameter θ which enters as a scale parameter, we examine the form of the equations for both conditional, unconditional and modified maximum likelihood estimators of θ and N and examine when these estimators will be finite, and unique. We also develop expressions for asymptotic bias and search for modified estimators which minimize the maximum asymptotic bias. These results are specialized tG the zxponential distribution. Methods of computing the solutions to the likelihood equatims are also discussed.  相似文献   

8.
The non-Gaussian maximum likelihood estimator is frequently used in GARCH models with the intention of capturing heavy-tailed returns. However, unless the parametric likelihood family contains the true likelihood, the estimator is inconsistent due to density misspecification. To correct this bias, we identify an unknown scale parameter ηf that is critical to the identification for consistency and propose a three-step quasi-maximum likelihood procedure with non-Gaussian likelihood functions. This novel approach is consistent and asymptotically normal under weak moment conditions. Moreover, it achieves better efficiency than the Gaussian alternative, particularly when the innovation error has heavy tails. We also summarize and compare the values of the scale parameter and the asymptotic efficiency for estimators based on different choices of likelihood functions with an increasing level of heaviness in the innovation tails. Numerical studies confirm the advantages of the proposed approach.  相似文献   

9.
We study robustness properties of two types of M-estimators of scale when both location and scale parameters are unknown: (i) the scale estimator arising from simultaneous M-estimation of location and scale; and (ii) its symmetrization about the sample median. The robustness criteria considered are maximal asymptotic bias and maximal asymptotic variance when the known symmetric unimodal error distribution is subject to unknown, possibly asymmetric, £-con-tamination. Influence functions and asymptotic variance functionals are derived, and computations of asymptotic biases and variances, under the normal distribution with ε-contamination at oo, are presented for the special subclass arising from Huber's Proposal 2 and its symmetrized version. Symmetrization is seen to reduce both asymptotic bias and variance. Some complementary theoretical results are obtained, and the tradeoff between asymptotic bias and variance is discussed.  相似文献   

10.
Demonstrated equivalence between a categorical regression model based on case‐control data and an I‐sample semiparametric selection bias model leads to a new goodness‐of‐fit test. The proposed test statistic is an extension of an existing Kolmogorov–Smirnov‐type statistic and is the weighted average of the absolute differences between two estimated distribution functions in each response category. The paper establishes an optimal property for the maximum semiparametric likelihood estimator of the parameters in the I‐sample semiparametric selection bias model. It also presents a bootstrap procedure, some simulation results and an analysis of two real datasets.  相似文献   

11.
Properties of Huber's M-estimators based on estimating equations have been studied extensively and are well understood for complete (i.i.d.) data. Although the concepts of M-estimators and influence curves have been extended for some time by Reid (1981) to incomplete data that are subject to right censoring, results on the general behavior of M-estimators based on incomplete data remain scattered and restrictive. This paper establishes a general large sample theory for M-estimators based on censored data. We show how to extend any asymptotic result available for M-estimators based on complete data to the case of censored data. The extensions are usually straightforward and include the multiparameter situation. Both the lifetime and censoring distributions may be discontinuous. We illustrate several extensions which provide simple and tractable sufficient conditions for an M-estimator to be strongly consistent and asymptotically normal. The influence curves and asymptotic variance of the M-estimators are also derived. The applicability of the new sufficient conditions is demonstrated through several examples, including location and scale M-estimators.  相似文献   

12.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

13.
This article focuses on the minimum distance estimators under two newly introduced modifications of Cramér–von Mises distance. The generalized power form of Cramér–von Mises distance is defined together with the so-called Kolmogorov–Cramér distance which includes both standard Kolmogorov and Cramér–von Mises distances as limiting special cases. We prove the consistency of Kolmogorov-Cramér estimators in the (expected) L1-norm by direct technique employing domination relations between statistical distances. In our numerical simulation we illustrate the quality of consistency property for sample sizes of the most practical range from n = 10 to n = 500. We study dependence of consistency in L1-norm on ?-contamination neighborhood of the true model and further the robustness of these two newly defined estimators for normal families and contaminated samples. Numerical simulations are used to compare statistical properties of the minimum Kolmogorov–Cramér, generalized Cramér–von Mises, standard Kolmogorov, and Cramér–von Mises distance estimators of the normal family scale parameter. We deal with the corresponding order of consistency and robustness. The resulting graphs are presented and discussed for the cases of the contaminated and uncontaminated pseudo-random samples.  相似文献   

14.
In this paper we consider the problem of estimating the locations of several normal populations when an order relation between them is known to be true. We compare the maximum likelihood estimator, the M-estimators based on Huber’s ψ function, a robust weighted likelihood estimator, the Gastworth estimator and the trimmed mean estimator. A Monte-Carlo study illustrates the performance of the methods considered.  相似文献   

15.
We consider the smoothed maximum likelihood estimator and the smoothed Grenander‐type estimator for a monotone baseline hazard rate λ 0 in the Cox model. We analyze their asymptotic behaviour and show that they are asymptotically normal at rate n m /(2m +1), when λ 0 is m ≥2 times continuously differentiable, and that both estimators are asymptotically equivalent. Finally, we present numerical results on pointwise confidence intervals that illustrate the comparable behaviour of the two methods.  相似文献   

16.
Several adjustments of the profile likelihood have the common effect of reducing the bias of the associated score function. Hence expansions for the adjusted score functions differ by a term, Dξ, that has small asymptotic order (n ). The effect of Dξ on other quantities of interest is studied. In particular, we find the bias and variance of the adjusted maximum-likelihood estimate to be relatively unaffected, while differences in the Bartlett correction depend on Dξ in a simple way.  相似文献   

17.
This paper concerns maximum likelihood estimation for the semiparametric shared gamma frailty model; that is the Cox proportional hazards model with the hazard function multiplied by a gamma random variable with mean 1 and variance θ. A hybrid ML-EM algorithm is applied to 26 400 simulated samples of 400 to 8000 observations with Weibull hazards. The hybrid algorithm is much faster than the standard EM algorithm, faster than standard direct maximum likelihood (ML, Newton Raphson) for large samples, and gives almost identical results to the penalised likelihood method in S-PLUS 2000. When the true value θ0 of θ is zero, the estimates of θ are asymptotically distributed as a 50–50 mixture between a point mass at zero and a normal random variable on the positive axis. When θ0 > 0, the asymptotic distribution is normal. However, for small samples, simulations suggest that the estimates of θ are approximately distributed as an x ? (100 ? x)% mixture, 0 ≤ x ≤ 50, between a point mass at zero and a normal random variable on the positive axis even for θ0 > 0. In light of this, p-values and confidence intervals need to be adjusted accordingly. We indicate an approximate method for carrying out the adjustment.  相似文献   

18.
We consider estimation for the homoscedastic additive model for multiple regression. A recursion is proposed in Opsomer (1999), and independently by the authors, for obtaining the estimators that solve the normal equations given by Hastie and Tibshirani (1990). The recursion can be exploited to obtain the asymptotic bias and variance expressions of the estimators for any p > 2 (Opsomer 1999) using repeated application of Opsomer and Ruppert (1997). Opsomer and Ruppert (1997) provide asymptotic bias and variance for the estimators when p = 2. Opsomer (1999) also uses the recursion to provide sufficient conditions for convergence of the backfitting algorithm to a unique solution of the normal equations. However, since explicit expressions for the solution to the normal equations are not given, he states, “The lemma does not provide a practical way of evaluating the existence and uniqueness of the backfitting estimators … ”. In this paper, explicit expressions for the estimators are derived. The explicit solution requires inverses of n × n matrices to solve the np × np system of normal equations. These matrix inverses are feasible to implement for moderate sample sizes and can be used in place of the backfitting algorithm.  相似文献   

19.
A two-stage procedure is studied for estimating changes in the parameters of the multi-parameter exponential family, given a sample X 1,…,X n. The first step is a likelihood ratio test of the hypothesis Hoof no change. Upon rejection of this hypothesis, the change point index and pre- and post-change parameters are estimated by maximum likelihood. The asymptotic (n → ∞) distribution of the log-likelihood ratio statistic is obtained under both Hoand local alternatives. The m.l.e.fs o of the pre- and post-change parameters are shown to be asymptotically jointly normal. The distribution of the change point estimate is obtained under local alternatives. Performance of the procedure for moderate samples is studied by Monte Carlo methods.  相似文献   

20.
Let X1, X2,…,Xn be independent, indentically distributed random variables with density f(x,θ) with respect to a σ-finite measure μ. Let R be a measurable set in the sample space X. The value of X is observable if X ? (X?R) and not otherwise. The number J of observable X’s is binomial, N, Q, Q = 1?P(X ? R). On the basis of J observations, it is desired to estimate N and θ. Estimators considered are conditional and unconditional maximum likelihood and modified maximum likelihood using a prior weight function to modify the likelihood before maximizing. Asymptotic expansions are developed for the [Ncirc]’s of the form [Ncirc] = N + α√N + β + op(1), where α and β are random variables. All estimators have the same α, which has mean 0, variance σ2 (a function of θ) and is asymptotically normal. Hence all are asymptotically equivalent by the usual limit distributional theory. The β’s differ and Eβ can be considered an “asymptotic bias”. Formulas are developed to compare the asymptotic biases of the various estimators. For a scale parameter family of absolutely continuous distributions with X = (0,∞) and R = (T,∞), special formuli are developed and a best estimator is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号