首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maclean et al. (1976) applied a specific Box-Cox transformation to test for mixtures of distributions against a single distribution. Their null hypothesis is that a sample of n observations is from a normal distribution with unknown mean and variance after a restricted Box-Cox transformation. The alternative is that the sample is from a mixture of two normal distributions, each with unknown mean and unknown, but equal, variance after another restricted Box-Cox transformation. We developed a computer program that calculated the maximum likelihood estimates (MLEs) and likelihood ratio test (LRT) statistic for the above. Our algorithm for the calculation of the MLEs of the unknown parameters used multiple starting points to protect against convergence to a local rather than global maximum. We then simulated the distribution of the LRT for samples drawn from a normal distribution and five Box-Cox transformations of a normal distribution. The null distribution appeared to be the same for the Box-Cox transformations studied and appeared to be distributed as a chi-square random variable for samples of 25 or more. The degrees of freedom parameter appeared to be a monotonically decreasing function of the sample size. The null distribution of this LRT appeared to converge to a chi-square distribution with 2.5 degrees of freedom. We estimated the critical values for the 0.10, 0.05, and 0.01 levels of significance.  相似文献   

2.
Consider the problem of testing the composite null hypothesis that a random sample X1,…,Xn is from a parent which is a member of a particular continuous parametric family of distributions against an alternative that it is from a separate family of distributions. It is shown here that in many cases a uniformly most powerful similar (UMPS) test exists for this problem, and, moreover, that this test is equivalent to a uniformly most powerful invariant (UMPI) test. It is also seen in the method of proof used that the UMPS test statistic Is a function of the statistics U1,…,Un?k obtained by the conditional probability integral transformations (CPIT), and thus that no Information Is lost by these transformations, It is also shown that these optimal tests have power that is a nonotone function of the null hypothesis class of distributions, so that, for example, if one additional parameter for the distribution is assumed known, then the power of the test can not lecrease. It Is shown that the statistics U1, …, Un?k are independent of the complete sufficient statistic, and that these statistics have important invariance properties. Two examples at given. The UMPS tests for testing the two-parameter uniform family against the two-parameter exponential family, and for testing one truncation parameter distribution against another one are derived.  相似文献   

3.
Abstract

Through simulation and regression, we study the alternative distribution of the likelihood ratio test in which the null hypothesis postulates that the data are from a normal distribution after a restricted Box–Cox transformation and the alternative hypothesis postulates that they are from a mixture of two normals after a restricted (possibly different) Box–Cox transformation. The number of observations in the sample is called N. The standardized distance between components (after transformation) is D = (μ2 ? μ1)/σ, where μ1 and μ2 are the component means and σ2 is their common variance. One component contains the fraction π of observed, and the other 1 ? π. The simulation results demonstrate a dependence of power on the mixing proportion, with power decreasing as the mixing proportion differs from 0.5. The alternative distribution appears to be a non-central chi-squared with approximately 2.48 + 10N ?0.75 degrees of freedom and non-centrality parameter 0.174N(D ? 1.4)2 × [π(1 ? π)]. At least 900 observations are needed to have power 95% for a 5% test when D = 2. For fixed values of D, power, and significance level, substantially more observations are necessary when π ≥ 0.90 or π ≤ 0.10. We give the estimated powers for the alternatives studied and a table of sample sizes needed for 50%, 80%, 90%, and 95% power.  相似文献   

4.
This paper proposes a class of non‐parametric test procedures for testing the null hypothesis that two distributions, F and G, are equal versus the alternative hypothesis that F is ‘more NBU (new better than used) at specified age t0’ than G. Using Hoeffding's two‐sample U‐statistic theorem, it establishes the asymptotic normality of the test statistics and produces a class of asymptotically distribution‐free tests. Pitman asymptotic efficacies of the proposed tests are calculated with respect to the location and shape parameters. A numerical example is provided for illustrative purposes.  相似文献   

5.
In an earlier paper the authors (1997) extended the results of Hayter (1990) to the two parameter exponential probability model. This paper addressee the extention to the scale parameter case under location-scale probability model. Consider k (k≧3) treatments or competing firms such that an observation from with treatment or firm follows a distribution with cumulative distribution function (cdf) Fi(x)=F[(x-μi)/Qi], where F(·) is any absolutely continuous cdf, i=1,…,k. We propose a test to test the null hypothesis H01=…=θk against the simple ordered alternative H11≦…≦θk, with at least one strict inequality, using the data Xi,j, i=1,…k; j=1,…,n1. Two methods to compute the critical points of the proposed test have been demonstrated by talking k two parameter exponential distributions. The test procedure also allows us to construct simultaneous one sided confidence intervals (SOCIs) for the ordered pairwise ratios θji, 1≦i<j≦k. Statistical simulation revealed that: 9i) actual sizes of the critical points are almost conservative and (ii) power of the proposed test relative to some existing tests is higher.  相似文献   

6.
A probability distribution function F is said to be symmetric when 1 ‐ F(x) ‐ F(‐x) = 0 for all x∈ R. Given a sequence of alternatives contiguous to a certain symmetric F0, the authors are concerned with testing for the null hypothesis of symmetry. The proposed tests are consistent against any nonsymmetric alternative, and their power with respect to the given sequence can easily be optimized. The tests are constructed by means of transformed empirical processes with an adequate selection of the underlying isometry, and the optimum power is obtained by suitably choosing the score functions. The test statistics are very easy to compute and their asymptotic distributions are simple.  相似文献   

7.
A new procedure for testing the H 0: μ1 = ··· = μ k against the alternative H u 1 ≥ ··· ≥μ r  ≤ ··· ≤ μ k with at least one strict inequality, where μ i is the location parameter of the ith two-parameter exponential distribution, i = 1,…, k, is proposed. Exact critical constants are computed using a recursive integration algorithm. Tables containing these critical constants are provided to facilitate the implementation of the proposed test procedure. Simultaneous confidence intervals for certain contrasts of the location parameters are derived by inverting the proposed test statistic. In comparison to existing tests, it is shown, by a simulation study, that the new test statistic is more powerful in detecting U-shaped alternatives when the samples are derived from exponential distributions. As an extension, the use of the critical constants for comparing Pareto distribution parameters is discussed.  相似文献   

8.
We study the problem of testing: H0 : μ ∈ P against H1 : μ ? P, based on a random sample of N observations from a p-dimensional normal distribution Np(μ, Σ) with Σ > 0 and P a closed convex positively homogeneous set. We develop the likelihood-ratio test (LRT) for this problem. We show that the union-intersection principle leads to a test equivalent to the LRT. It also gives a large class of tests which are shown to be admissible by Stein's theorem (1956). Finally, we give the α-level cutoff points for the LRT.  相似文献   

9.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

10.
A randomized procedure is described for constructing an exact test from a test statistic F for which the null distribution is unknown. The procedure is restricted to cases where F is a function of a random element U that has a known distribution under the null hypothesis. The power of the exact randomized test is shown to be greater in some cases than the power of the exact nonrandomized test that could be constructed if the null distribution of Fwere known.  相似文献   

11.
We consider a nonparametric autoregression model under conditional heteroscedasticity with the aim to test whether the innovation distribution changes in time. To this end, we develop an asymptotic expansion for the sequential empirical process of nonparametrically estimated innovations (residuals). We suggest a Kolmogorov–Smirnov statistic based on the difference of the estimated innovation distributions built from the first ?ns?and the last n ? ?ns? residuals, respectively (0 ≤ s ≤ 1). Weak convergence of the underlying stochastic process to a Gaussian process is proved under the null hypothesis of no change point. The result implies that the test is asymptotically distribution‐free. Consistency against fixed alternatives is shown. The small sample performance of the proposed test is investigated in a simulation study and the test is applied to a data example.  相似文献   

12.
Suppose we have k random samples each of size n from a two parameter exponential distribution with location parameters μ i i=1,…,k, and where each item has the same, unknown scale parameter. A multistage procedure is developed to determine tk groups such that in any one group the distributions have μi's that are not appreciably different. The method yields a unique grouping and extends the approach of the Kumar and Pate1 test.The emphasis is on the development of a procedure based on the null sampling distribution of the maximum gap of the ordered first order statistics from exponential distributions. The procedure is based on complete ordered samples or censored (of any or of all) samples.  相似文献   

13.
Let X(1)X(2)≤···≤X(n) be the order statistics from independent and identically distributed random variables {Xi, 1≤in} with a common absolutely continuous distribution function. In this work, first a new characterization of distributions based on order statistics is presented. Next, we review some conditional expectation properties of order statistics, which can be used to establish some equivalent forms for conditional expectations for sum of random variables based on order statistics. Using these equivalent forms, some known results can be extended immediately.  相似文献   

14.
“Nonparametric” in the title is used to say that observations X 1,…,X n come from an unknown distribution F ∈ ? with ? being the class of all continuous and strictly increasing distribution functions. The problem is to estimate the quantile of a given order q ∈ (0,1) of the distribution F. The class ? of distributions is very large; it is so large that even X nq:n , where nq is an integer, may be very poor estimator of the qth quantile. To assess the performance of estimators no properties based on moments may be used: expected values of estimators should be replaced by their medians, their variances—by some characteristics of concentration of distributions around the median. If an estimator is median-biased for one of distributions, the bias of the estimator may be infinitely large for other distributions. In the note optimal estimators with respect to various criteria of optimality are presented. The pivotal function F(T) of the estimator T is introduced which enables us to apply the classical statistical approach.  相似文献   

15.
Let X1,…, Xn be random variables symmetric about θ from a common unknown distribution Fθ(x) =F(x–θ). To test the null hypothesis H0:θ= 0 against the alternative H1:θ > 0, permutation tests can be used at the cost of computational difficulties. This paper investigates alternative tests that are computationally simpler, notably some bootstrap tests which are compared with permutation tests. Of these the symmetrical bootstrap-f test competes very favourably with the permutation test in terms of Bahadur asymptotic efficiency, so it is a very attractive alternative.  相似文献   

16.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results.  相似文献   

17.
Knowledge concerning the family of univariate continuous distributions with density function f and distribution function F defined through the relation f(x) = F α(x)(1 ? F(x))β, α, β ? , is reviewed and modestly extended. Symmetry, modality, tail behavior, order statistics, shape properties based on the mode, L-moments, and—for the first time—transformations between members of the family are the general properties considered. Fully tractable special cases include all the complementary beta distributions (including uniform, power law and cosine distributions), the logistic, exponential and Pareto distributions, the Student t distribution on 2 degrees of freedom and, newly, the distribution corresponding to α = β = 5/2. The logistic distribution is central to some of the developments of the article.  相似文献   

18.
Let {xij(1 ? j ? ni)|i = 1, 2, …, k} be k independent samples of size nj from respective distributions of functions Fj(x)(1 ? j ? k). A classical statistical problem is to test whether these k samples came from a common distribution function, F(x) whose form may or may not be known. In this paper, we consider the complementary problem of estimating the distribution functions suspected to be homogeneous in order to improve the basic estimator known as “empirical distribution function” (edf), in an asymptotic setup. Accordingly, we consider four additional estimators, namely, the restricted estimator (RE), the preliminary test estimator (PTE), the shrinkage estimator (SE), and the positive rule shrinkage estimator (PRSE) and study their characteristic properties based on the mean squared error (MSE) and relative risk efficiency (RRE) with tables and graphs. We observed that for k ? 4, the positive rule SE performs uniformly better than both shrinkage and the unrestricted estimator, while PTEs works reasonably well for k < 4.  相似文献   

19.
20.
Simulated powers of the MRPP two-sample rank test statistic ?1- are compared with the powers of the MRPP test statistic ?2(the two-sided Wilcoxon-Mann-Whitney test) for large samples from several underlying populations. Powers are obtained using two approximate distributions of ?1 involving three and four moments

respectively, The use of the fourth moment indicates that an approximation to the null distribution of ? based on four moments can perform better  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号