首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The probability distribution of an extremal process in Rd with independent max-increments is completely determined by its distribution function. The df of an extremal process is similar to the cdf of a random vector. It is a monotone function on (0, ∞) × Rd with values in the interval [0,1]. On the other hand the probability distribution of an extremal process is a probability measure on the space of sample functions. That is the space of all increasing right continuous functions y: (0, ∞) → Rd with the topology of weak convergence. A sequence of extremal processes converges in law if the probability distributions converge weakly. This is shown to be equivalent to weak convergence of the df's.

An extremal process Y: [0, ∞) → Rd is generated by a point process on the space [0, ∞) × [-∞, ∞)d and has a decomposition Y = X v Z as the maximum of two independent extremal processes with the same lower curve as the original process. The process X is the continuous part and Z contains the fixed discontinuities of the process Y. For a real valued extremal process the decomposition is unique: for a multivariate extremal process uniqueness breaks down due to blotting.  相似文献   

2.
In this paper we consider a sequence of independent continuous symmetric random variables X1, X2, …, with heavy-tailed distributions. Then we focus on limiting behavior of randomly weighted averages Sn = R(n)1X1 + ??? + R(n)nXn, where the random weights R(n)1, …, Rn(n) which are independent of X1, X2, …, Xn, are the cuts of (0, 1) by the n ? 1 order statistics from a uniform distribution. Indeed we prove that cnSn converges in distribution to a symmetric α-stable random variable with cn = n1 ? 1/α1/α(α + 1).  相似文献   

3.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

4.
A sequence {Xn, n≥1} of independent and identically distributed random variables with absolutely continuous (with respect to Lebesque measure) cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max(X1,…,Xj?1), j>1. Let {XL(n), n≥0} with L(o)=1 be the sequence of such record values and Zn,n?1=XL(n)–XL(n?1). Some properties of Zn,n?1 are studied and characterizations of the exponential distribution are discussed in terms of the expectation and the hazard rate of zn,n?1.  相似文献   

5.
Let {Xn, n ? 1} be a sequence of asymptotically almost negatively associated (AANA, for short) random variables which is stochastically dominated by a random variable X, and {dni, 1 ? i ? n, n ? 1} be a sequence of real function, which is defined on a compact set E. Under some suitable conditions, we investigate some convergence properties for weighted sums of AANA random variables, especially the Lp convergence and the complete convergence. As an application, the Marcinkiewicz–Zygmund-type strong law of large numbers for AANA random variables is obtained.  相似文献   

6.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

7.
Two processes of importance in statistics and probability are the empirical and partial-sum processes. Based on d-dimensional data X1, … Xa the empirical measure is defined for any ARd by the sample proportion of observations in A. When normalized, Fn yields the empirical process Wn: = n1/2 (Fn - F), where F denotes the “true” probability measure. To define partial-sum processes, one needs data that are assigned to specified locations (in contrast to the above, where specified unit masses are assigned to random locations). A suitable context for many applications is that of data attached to points of a lattice, say {Xj:j ϵ Jd} where J = {1, 2,…}, for which the partial sums are defined for any ARd by Thus S(A) is the sum of the data contained in A. When normalized, S yields the partial-sum process. This paper provides an overview of asymptotic results for empirical and partial-sum processes, including strong laws and central limit theorems, together with some indications of their inferential implications.  相似文献   

8.
Let {X, Xn; n ≥ 1} be a sequence of real-valued iid random variables, 0 < r < 2 and p > 0. Let D = { A = (ank; 1 ≤ kn, n ≥ 1); ank, ? R and supn, k |an,k| < ∞}. Set Sn( A ) = ∑nk=1an, kXk for A ? D and n ≥ 1. This paper is devoted to determining conditions whereby E{supn ≥ 1, |Sn( A )|/n1/r}p < ∞ or E{supn ≥ 2 |Sn( A )|/2n log n)1/2}p < ∞ for every A ? D. This generalizes some earlier results, including those of Burkholder (1962), Choi and Sung (1987), Davis (1971), Gut (1979), Klass (1974), Siegmund (1969) and Teicher (1971).  相似文献   

9.
Let X1 be a strictly stationary multiple time series with values in Rd and with a common density f. Let X1,.,.,Xn, be n consecutive observations of X1. Let k = kn, be a sequence of positive integers, and let Hni be the distance from Xi to its kth nearest neighbour among Xj, j i. The multivariate variable-kernel estimate fn, of f is defined by where K is a given density. The complete convergence of fn, to f on compact sets is established for time series satisfying a dependence condition (referred to as the strong mixing condition in the locally transitive sense) weaker than the strong mixing condition. Appropriate choices of k are explicitly given. The results apply to autoregressive processes and bilinear time-series models.  相似文献   

10.
Abstract

Let {Xn, n ? 1} be a sequence of negatively superadditive dependent (NSD, in short) random variables and {bni, 1 ? i ? n, n ? 1} be an array of real numbers. In this article, we study the strong law of large numbers for the weighted sums ∑ni = 1bniXi without identical distribution. We present some sufficient conditions to prove the strong law of large numbers. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for NSD random variables is obtained. In addition, the complete convergence for the weighted sums of NSD random variables is established. Our results generalize and improve some corresponding ones for independent random variables and negatively associated random variables.  相似文献   

11.
Let X1Xn be a random sample from an absolutely continuous distribution with the corresponding order statistics X1:nX2:nXn:n. A complete solution of the problem, posed in 1967 by T. Ferguson, of determining the distribution by linearity of regression of Xk+2:n with respect to Xk:n is given. The only possible distributions are of the exponential, power and Pareto type. A linear regression relation for exponents of order statistics is also considered.  相似文献   

12.
Let X(1,n,m1,k),X(2,n,m2,k),…,X(n,n,m,k) be n generalized order statistics from a continuous distribution F which is strictly increasing over (a,b),−a<b, the support of F. Let g be an absolutely continuous and monotonically increasing function in (a,b) with finite g(a+),g(b) and E(g(X)). Then for some positive integer s,1<sn, we give characterization of distributions by means of
  相似文献   

13.
Consider a family of square-integrable Rd-valued statistics Sk = Sk(X1,k1; X2,k2;…; Xm,km), where the independent samples Xi,kj respectively have ki i.i.d. components valued in some separable metric space Xi. We prove a strong law of large numbers, a central limit theorem and a law of the iterated logarithm for the sequence {Sk}, including both the situations where the sample sizes tend to infinity while m is fixed and those where the sample sizes remain small while m tends to infinity. We also obtain two almost sure convergence results in both these contexts, under the additional assumption that Sk is symmetric in the coordinates of each sample Xi,kj. Some extensions to row-exchangeable and conditionally independent observations are provided. Applications to an estimator of the dimension of a data set and to the Henze-Schilling test statistic for equality of two densities are also presented.  相似文献   

14.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

15.
Let X1, X2,… be a sequence of independent random variables with distribution functions F1, where 1 ≤ in, and for each n ≥ 1 let X1,n ≤… ≤ Xn,n denote the order statistics of the first n random variables. Under suitable hypotheses about the F1, we characterize the limit distribution functions H(x) for which P(Xk,n ? anx + bn) → H(x), where an > 0 and bn are real constants. We consider the cases where κ = κ(n) satisfies √n {κ(n)/n — λ} → 0 and √n {κ(n)/n — λ} → ∞ separately.  相似文献   

16.
《随机性模型》2013,29(1):41-69
Let { X n ,n≥1} be a sequence of iid. Gaussian random vectors in R d , d≥2, with nonsingular distribution function F. In this paper the asymptotics for the sequence of integrals I F,n (G n )?n R d G n n?1( X dF( X ) is considered with G n some distribution function on R d . In the case G n =F the integral I F,n (F)/n is the probability that a record occurs in X 1,…, X n at index n. [1] Gnedin, A.V. 1998. Records from a Multivariate Normal Sample. Statist. Probab. Lett., 39: 1115. [Crossref], [Web of Science ®] [Google Scholar] obtained lower and upper asymptotic bounds for this case, whereas [2] Ledford, W.A. and Twan, A.J. 1998. On the Tail Concomitant Behaviour for Extremes. Adv. Appl. Probab., 30: 197215. [Crossref], [Web of Science ®] [Google Scholar] showed the rate of convergence if d=2. In this paper we derive the exact rate of convergence of I F,n (G n ) for d≥2 under some restrictions on the distribution function G n . Some related results for multivariate Gaussian tails are discussed also.  相似文献   

17.
For a continuous random variable X with support equal to (a, b), with c.d.f. F, and g: Ω1 → Ω2 a continuous, strictly increasing function, such that Ω1∩Ω2?(a, b), but otherwise arbitrary, we establish that the random variables F(X) ? F(g(X)) and F(g? 1(X)) ? F(X) have the same distribution. Further developments, accompanied by illustrations and observations, address as well the equidistribution identity U ? ψ(U) = dψ? 1(U) ? U for UU(0, 1), where ψ is a continuous, strictly increasing and onto function, but otherwise arbitrary. Finally, we expand on applications with connections to variance reduction techniques, the discrepancy between distributions, and a risk identity in predictive density estimation.  相似文献   

18.
For n ≥ 1, let Xnl,…, Xnn be independent integer-valued random variables, and define Sn = Xnl+···+Xnn. In a recent paper, we obtained a simple proof for the convergence of the distribution of Sn to a Poisson distribution under very general conditions. In this paper, we extend that result to the multidimensional case.  相似文献   

19.
In this article, let {X1, …, Xn} be a sequence of negatively associated random variables and {ani, 1 ? i ? n, n ? 1} be a triangular array of constants. Several almost sure convergence theorems for the weighted sums ∑ni = 1aniXi are established.  相似文献   

20.
Let {X n:n ≥ 1} be an i.i.d. sequence of random variables with a continuous distribution function F. Under the assumption that the upper tail of Fis regularly varying with exponent 1/α, α > 0, we study the asymptotic properties of an estimator of α based on k-record values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号