首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of minimax-variance, robust estimation of a location parameter, through the use of L- and R-estimators. We derive an easily checked necessary condition for L-estimation to be minimax, and a related sufficient condition for R-estimation to be minimax. Those cases in the literature in which L-estimation is known not to be minimax, and those in which R-estimation is minimax, are derived as consequences of these conditions. New classes of examples are given in each case. As well, we answer a question of Scholz (1974), who showed essentially that the asymptotic variance of an R-estimator never exceeds that of an L-estimator, if both are efficient at the same strongly unimodal distribution. Scholz raised the question of whether or not the assumption of strong unimodality could be dropped. We answer this question in the negative, theoretically and by examples. In the examples, the minimax property fails both for L-estimation and for R-estimation, but the variance of the L-estimator, as the distribution of the observation varies over the given neighbourhood, remains unbounded. That of the R-estimator is unbounded.  相似文献   

2.
In the location-scale estimation problem, we study robustness properties of M-estimators of the scale parameter under unknown ?-contamination of a fixed symmetric unimodal error distribution F0. Within a general class of M-estimators, the estimator with minimax asymptotic bias is shown to lie within the subclass of α-interquantile ranges of the empirical distribution symmetrized about the sample median. Our main result is that as ? → 0, the limiting minimax asymptotic bias estimator is sometimes (e.g., when Fo is Cauchy), but not always, the median absolute deviation about the median. It is also shown that contamination in the neighbourhood of a discontinuity of the influence function of a minimax bias estimator can sometimes inflate the asymptotic variance beyond that achieved by placing all the ?-contamination at infinity. This effect is quantified by a new notion of asymptotic efficiency that takes into account the effect of infinitesimal contamination of the parametric model for the error distribution.  相似文献   

3.
John R. Collins 《Statistics》2013,47(4):287-304

We derive optimal bias-robust L-estimators of a scale parameter σ based on random samples from F(( ·?θ/σ), where θ and σ are unknown and F is an unknown member of a ε-contaminated neighborhood of a fixed symmetric error distribution F 0. Within a very general class S of L-estimators which are Fisher-consistent at F, we solve for: (i) the estimator with minimax asymptotic bias over the ε-contamination neighborhood; and (ii) the estimator with minimum gross error sensitivity at F 0 [the limiting case of (i) as ε → 0]. The solutions to problems (i) and (ii) are shown, using a generalized method of moment spaces, to be mixtures of at most two interquantile ranges. A graphical method is presented for finding the optimal bias-robust solutions, and examples are given.  相似文献   

4.
We consider minimax-bias M-estimation of a location parameter in a Kolmogorov neighbourhood K() of a normal distribution. The maximum asymptotic bias of M-estimators for the Kolmogorov normal neighbourhood is derived, and its relation with the gross-error sensitivity of the estimator at the nominal model (the Gaussian case) is found. In addition, efficient bias-robust M-estimators Ti are constructed. Numerical results are also obtained to show the percentage of increase in maximum asymptotic bias and the efficiency we can achieve for some well-known -functions.  相似文献   

5.
In finite sample studies redescending M-estimators outperform bounded M-estimators (see for example, Andrews et al. [1972. Robust Estimates of Location. Princeton University Press, Princeton]). Even though redescenders arise naturally out of the maximum likelihood approach if one uses very heavy-tailed models, the commonly used redescenders have been derived from purely heuristic considerations. Using a recent approach proposed by Shurygin, we study the optimality of redescending M-estimators. We show that redescending M-estimator can be designed by applying a global minimax criterion to locally robust estimators, namely maximizing over a class of densities the minimum variance sensitivity over a class of estimators. As a particular result, we prove that Smith's estimator, which is a compromise between Huber's skipped mean and Tukey's biweight, provides a guaranteed level of an estimator's variance sensitivity over the class of densities with a bounded variance.  相似文献   

6.
Several methods have been suggested to calculate robust M- and G-M -estimators of the regression parameter β and of the error scale parameter σ in a linear model. This paper shows that, for some data sets well known in robust statistics, the nonlinear systems of equations for the simultaneous estimation of β, with an M-estimate with a redescending ψ-function, and σ, with the residual median absolute deviation (MAD), have many solutions. This multiplicity is not caused by the possible lack of uniqueness, for redescending ψ-functions, of the solutions of the system defining β with known σ; rather, the simultaneous estimation of β and σ together creates the problem. A way to avoid these multiple solutions is to proceed in two steps. First take σ as the median absolute deviation of the residuals for a uniquely defined robust M-estimate such as Huber's Proposal 2 or the L1-estimate. Then solve the nonlinear system for the M-estimate with σ equal to the value obtained at the first step to get the estimate of β. Analytical conditions for the uniqueness of M and G-M-estimates are also given.  相似文献   

7.
Qingguo Tang 《Statistics》2013,47(5):389-404
The varying coefficient model is a useful extension of linear models and has many advantages in practical use. To estimate the unknown functions in the model, the kernel type with local linear least-squares (L 2) estimation methods has been proposed by several authors. When the data contain outliers or come from population with heavy-tailed distributions, L 1-estimation should yield better estimators. In this article, we present the local linear L 1-estimation method and derive the asymptotic distributions of the L 1-estimators. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L 1-estimators outperform the L 2-estimators.  相似文献   

8.
When the data contain outliers or come from population with heavy-tailed distributions, which appear very often in spatiotemporal data, the estimation methods based on least-squares (L2) method will not perform well. More robust estimation methods are required. In this article, we propose the local linear estimation for spatiotemporal models based on least absolute deviation (L1) and drive the asymptotic distributions of the L1-estimators under some mild conditions imposed on the spatiotemporal process. The simulation results for two examples, with outliers and heavy-tailed distribution, respectively, show that the L1-estimators perform better than the L2-estimators.  相似文献   

9.
The efficiency of an estimator depends heavily on the tails of the distribution of the observations. Several partial orders have been defined to compare probability distributions according to their tails. In this paper we show that the asymptotic relative efficiency of two L-estimators with monotone weight functions is isotonic with respect to the partial orders defined by van Zwet (1964) and Lawrence (1975). We also give results concerning trimmed means.  相似文献   

10.
Linear functions of order statistics (“L-estimates”) of the form Tn =under jackknifing are investigated. This paper proves that with suitable conditions on the function J, the jackknifed version Tn of the L-estimate Tn has the same limit distribution as Tn. It is also shown that the jackknife estimate of the asymptotic variance of n1/2 is consistent. Furthermore, the Berry-Esséen rate associated with asymptotic normality, and a law of the iterated logarithm of a class of jackknife L-estimates, are characterized.  相似文献   

11.
We derive the AMSE (maximal asymptotic mean-squared-error) of the general class of L-estimators of scale that are location-scale equivariant and Fisher consistent. For non-normal error distributions, we determined estimators that have minimum AMSE over the subclass of (i) α-interquantile ranges and (ii) mixtures of at most two α-interquantile ranges. Finally, the L-estimators of scale symmetrized about the median were found to have the same AMSE as their nonsymmetrized counterparts, thus yielding the same results as in the symmetrized case.  相似文献   

12.
To perform regression analysis in high dimensions, lasso or ridge estimation are a common choice. However, it has been shown that these methods are not robust to outliers. Therefore, alternatives as penalized M-estimation or the sparse least trimmed squares (LTS) estimator have been proposed. The robustness of these regression methods can be measured with the influence function. It quantifies the effect of infinitesimal perturbations in the data. Furthermore, it can be used to compute the asymptotic variance and the mean-squared error (MSE). In this paper we compute the influence function, the asymptotic variance and the MSE for penalized M-estimators and the sparse LTS estimator. The asymptotic biasedness of the estimators make the calculations non-standard. We show that only M-estimators with a loss function with a bounded derivative are robust against regression outliers. In particular, the lasso has an unbounded influence function.  相似文献   

13.
We consider the asymptotic behaviour of L1 -estimators in a linear regression under a very general form of heteroscedasticity. The limiting distributions of the estimators are derived under standard conditions on the design. We also consider the asymptotic behaviour of the bootstrap in the heteroscedastic model and show that it is consistent to first order only if the limiting distribution is normal.  相似文献   

14.
We describe a method of calculating sharp lower and upper bounds on the expectations of arbitrary, properly centered L-statistics expressed in the Gini mean difference units of the original i.i.d. observations. Precise values of bounds are derived for the single-order statistics, their differences, and some examples of L-estimators. We also present the families of discrete distributions which attain the bounds, possibly in the limit.  相似文献   

15.
The problem of estimating the mean θ of a not necessarily normal p-variate (p > 3) distribution with unknown covariance matrix of the form σ2A (A a known diagonal matrix) on the basis of ni > 2 observations on each coordinate Xt (1 < i < p) is considered. It is argued that the class of scale (or variance) mixtures of normal distributions is a reasonable class to study. Assuming the loss function is quadratic, a large class of improved shrinkage estimators is developed in the case of a balanced design. We generalize results of Berger and Strawderman for one observation in the known-variance case. This methodology also permits the development of a new class of minimax shrinkage estimators of the mean of a p-variate normal distribution for an unbalanced design. Numerical calculations show that the improvements in risk can be substantial.  相似文献   

16.
It is an elementary fact that the size of an orthogonal array of strength t on k factors must be a multiple of a certain number, say Lt, that depends on the orders of the factors. Thus Lt is a lower bound on the size of arrays of strength t on those factors, and is no larger than Lk, the size of the complete factorial design. We investigate the relationship between the numbers Lt, and two questions in particular: For what t is Lt < Lk? And when Lt = Lk, is the complete factorial design the only array of that size and strength t? Arrays are assumed to be mixed-level.

We refer to an array of size less than Lk as a proper fraction. Guided by our main result, we construct a variety of mixed-level proper fractions of strength k ? 1 that also satisfy a certain group-theoretic condition.  相似文献   

17.
Let X =(x)ij=(111, …, X,)T, i = l, …n, be an n X random matrix having multivariate symmetrical distributions with parameters μ, Σ. The p-variate normal with mean μ and covariance matrix is a member of this family. Let be the squared multiple correlation coefficient between the first and the succeeding p1 components, and let p2 = + be the squared multiple correlation coefficient between the first and the remaining p1 + p2 =p – 1 components of the p-variate normal vector. We shall consider here three testing problems for multivariate symmetrical distributions. They are (A) to test p2 =0 against; (B) to test against =0, 0; (C) to test against p2 =0, We have shown here that for problem (A) the uniformly most powerful invariant (UMPI) and locally minimax test for the multivariate normal is UMPI and is locally minimax as p2 0 for multivariate symmetrical distributions. For problem (B) the UMPI and locally minimax test is UMPI and locally minimax as for multivariate symmetrical distributions. For problem (C) the locally best invariant (LBI) and locally minimax test for the multivariate normal is also LBI and is locally minimax as for multivariate symmetrical distributions.  相似文献   

18.
Let πi(i=1,2,…K) be independent U(0,?i) populations. Let Yi denote the largest observation based on a random sample of size n from the i-th population. for selecting the best populaton, that is the one associated with the largest ?i, we consider the natural selection rule, according to which the population corresponding to the largest Yi is selected. In this paper, the estimation of M. the mean of the selected population is considered. The natural estimator is positively biased. The UMVUE (uniformly minimum variance unbiased estimator) of M is derived using the (U,V)-method of Robbins (1987) and its asymptotic distribution is found. We obtain a minimax estimator of M for K≤4 and a class of admissible estimators among those of the form cYmax. For the case K = 2, the UMVUE is improved using the Brewster-Zidek (1974) Technique with respect to the squared error loss function L1 and the scale-invariant loss function L2. For the case K = 2, the MSE'S of all the estimators are compared for selected values of n and ρ=?1/(?1+?2).  相似文献   

19.
We study the asymptotics of Lp-estimators, p>0, as estimates of a parameter of location for data coming for a symmetric density with an infinity cusp at the center of symmetry of the distribution. In this situation, the data are more concentrated around the parameter of location than in usual cases. The maximum-likelihood estimator is not defined. The rates of convergence of the Lp-estimators in this situation depend on p and on the shape of the density. For some densities and small values of p, the Lp-estimator converges with a fast rate of convergence.  相似文献   

20.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号