首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Intention‐to‐treat (ITT) analysis is widely used to establish efficacy in randomized clinical trials. However, in a long‐term outcomes study where non‐adherence to study drug is substantial, the on‐treatment effect of the study drug may be underestimated using the ITT analysis. The analyses presented herein are from the EVOLVE trial, a double‐blind, placebo‐controlled, event‐driven cardiovascular outcomes study conducted to assess whether a treatment regimen including cinacalcet compared with placebo in addition to other conventional therapies reduces the risk of mortality and major cardiovascular events in patients receiving hemodialysis with secondary hyperparathyroidism. Pre‐specified sensitivity analyses were performed to assess the impact of non‐adherence on the estimated effect of cinacalcet. These analyses included lag‐censoring, inverse probability of censoring weights (IPCW), rank preserving structural failure time model (RPSFTM) and iterative parameter estimation (IPE). The relative hazard (cinacalcet versus placebo) of mortality and major cardiovascular events was 0.93 (95% confidence interval 0.85, 1.02) using the ITT analysis; 0.85 (0.76, 0.95) using lag‐censoring analysis; 0.81 (0.70, 0.92) using IPCW; 0.85 (0.66, 1.04) using RPSFTM and 0.85 (0.75, 0.96) using IPE. These analyses, while not providing definitive evidence, suggest that the intervention may have an effect while subjects are receiving treatment. The ITT method remains the established method to evaluate efficacy of a new treatment; however, additional analyses should be considered to assess the on‐treatment effect when substantial non‐adherence to study drug is expected or observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Network meta‐analysis can be implemented by using arm‐based or contrast‐based models. Here we focus on arm‐based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial‐by‐treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi‐likelihood/pseudo‐likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood reduce bias and yield satisfactory coverage rates. Sum‐to‐zero restriction and baseline contrasts for random trial‐by‐treatment interaction effects, as well as a residual ML‐like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood are therefore recommended.  相似文献   

3.
Two‐stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean‐adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean‐squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.  相似文献   

4.
A clinical hold order by the Food and Drug Administration (FDA) to the sponsor of a clinical trial is a measure to delay a proposed or to suspend an ongoing clinical investigation. The phase III clinical trial START serves as motivating data example to explore implications and potential statistical approaches for a trial continuing after a clinical hold is lifted. In spite of a modified intention‐to‐treat (ITT) analysis introduced to account for the clinical hold by excluding patients potentially affected most by the clinical hold, results of the trial did not show a significant improvement of overall survival duration, and the question remains whether the negative result was an effect of the clinical hold. In this paper, we propose a multistate model incorporating the clinical hold as well as disease progression as intermediate events to investigate the impact of the clinical hold on the treatment effect. Moreover, we consider a simple counterfactual censoring approach as alternative strategy to the modified ITT analysis to deal with a clinical hold. Using a realistic simulation study informed by the START data and with a design based on our multistate model, we show that the modified ITT analysis used in the START trial was reasonable. However, the censoring approach will be shown to have some benefits in terms of power and flexibility.  相似文献   

5.
Missing data in clinical trials is a well‐known problem, and the classical statistical methods used can be overly simple. This case study shows how well‐established missing data theory can be applied to efficacy data collected in a long‐term open‐label trial with a discontinuation rate of almost 50%. Satisfaction with treatment in chronically constipated patients was the efficacy measure assessed at baseline and every 3 months postbaseline. The improvement in treatment satisfaction from baseline was originally analyzed with a paired t‐test ignoring missing data and discarding the correlation structure of the longitudinal data. As the original analysis started from missing completely at random assumptions regarding the missing data process, the satisfaction data were re‐examined, and several missing at random (MAR) and missing not at random (MNAR) techniques resulted in adjusted estimate for the improvement in satisfaction over 12 months. Throughout the different sensitivity analyses, the effect sizes remained significant and clinically relevant. Thus, even for an open‐label trial design, sensitivity analysis, with different assumptions for the nature of dropouts (MAR or MNAR) and with different classes of models (selection, pattern‐mixture, or multiple imputation models), has been found useful and provides evidence towards the robustness of the original analyses; additional sensitivity analyses could be undertaken to further qualify robustness. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A complete two‐period experimental design has been defined as one in which subjects are randomized to treatment, observed for the occurrence of an event of interest, re‐randomized, and observed again for the event in a second period. A 4‐year vaccine efficacy trial was planned to compare a high‐dose vaccine with a standard dose vaccine. Subjects would be randomized each year, and subjects who had participated in a previous year would be allowed to re‐enroll in a subsequent year and would be re‐randomized. A question of interest is whether positive correlation between observations on subjects who re‐enrolled would inflate the variance of test statistics. The effect of re‐enrollment and correlation on type 1 error in a 4‐year trial is investigated by simulation. As conducted, the trial met its power requirements after two years. Subjects therefore included some who participated for a single year and others who participated in both years. Those who participated in both years constituted a complete two‐period design. An algebraic expression for the variance of the treatment difference in a complete two‐period design is derived. It is shown that under a ‘no difference’ null, correlation does not result in variance inflation in this design. When there is a treatment difference, there is variance inflation but it is small. In the vaccine efficacy trial, the effect of correlation on the statistical inference was negligible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

8.
For first‐time‐in‐human studies with small molecules alternating cross‐over designs are often employed and at study end are analyzed using linear models. We discuss the impact of including a period effect in the model on the precision with which dose level contrasts can be estimated and quantify the bias of least squares estimators if a period effect is inherent in the data that is not accounted for in the model. We also propose two alternative designs that allow a more precise estimation of dose level contrasts compared with the standard design when period effects are included in the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In the absence of placebo‐controlled trials, the efficacy of a test treatment can be alternatively examined by showing its non‐inferiority to an active control; that is, the test treatment is not worse than the active control by a pre‐specified margin. The margin is based on the effect of the active control over placebo in historical studies. In other words, the non‐inferiority setup involves a network of direct and indirect comparisons between test treatment, active controls, and placebo. Given this framework, we consider a Bayesian network meta‐analysis that models the uncertainty and heterogeneity of the historical trials into the non‐inferiority trial in a data‐driven manner through the use of the Dirichlet process and power priors. Depending on whether placebo was present in the historical trials, two cases of non‐inferiority testing are discussed that are analogs of the synthesis and fixed‐margin approach. In each of these cases, the model provides a more reliable estimate of the control given its effect in other trials in the network, and, in the case where placebo was only present in the historical trials, the model can predict the effect of the test treatment over placebo as if placebo had been present in the non‐inferiority trial. It can further answer other questions of interest, such as comparative effectiveness of the test treatment among its comparators. More importantly, the model provides an opportunity for disproportionate randomization or the use of small sample sizes by allowing borrowing of information from a network of trials to draw explicit conclusions on non‐inferiority. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Missing data, and the bias they can cause, are an almost ever‐present concern in clinical trials. The last observation carried forward (LOCF) approach has been frequently utilized to handle missing data in clinical trials, and is often specified in conjunction with analysis of variance (LOCF ANOVA) for the primary analysis. Considerable advances in statistical methodology, and in our ability to implement these methods, have been made in recent years. Likelihood‐based, mixed‐effects model approaches implemented under the missing at random (MAR) framework are now easy to implement, and are commonly used to analyse clinical trial data. Furthermore, such approaches are more robust to the biases from missing data, and provide better control of Type I and Type II errors than LOCF ANOVA. Empirical research and analytic proof have demonstrated that the behaviour of LOCF is uncertain, and in many situations it has not been conservative. Using LOCF as a composite measure of safety, tolerability and efficacy can lead to erroneous conclusions regarding the effectiveness of a drug. This approach also violates the fundamental basis of statistics as it involves testing an outcome that is not a physical parameter of the population, but rather a quantity that can be influenced by investigator behaviour, trial design, etc. Practice should shift away from using LOCF ANOVA as the primary analysis and focus on likelihood‐based, mixed‐effects model approaches developed under the MAR framework, with missing not at random methods used to assess robustness of the primary analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Subgroup by treatment interaction assessments are routinely performed when analysing clinical trials and are particularly important for phase 3 trials where the results may affect regulatory labelling. Interpretation of such interactions is particularly difficult, as on one hand the subgroup finding can be due to chance, but equally such analyses are known to have a low chance of detecting differential treatment effects across subgroup levels, so may overlook important differences in therapeutic efficacy. EMA have therefore issued draft guidance on the use of subgroup analyses in this setting. Although this guidance provided clear proposals on the importance of pre‐specification of likely subgroup effects and how to use this when interpreting trial results, it is less clear which analysis methods would be reasonable, and how to interpret apparent subgroup effects in terms of whether further evaluation or action is necessary. A PSI/EFSPI Working Group has therefore been investigating a focused set of analysis approaches to assess treatment effect heterogeneity across subgroups in confirmatory clinical trials that take account of the number of subgroups explored and also investigating the ability of each method to detect such subgroup heterogeneity. This evaluation has shown that the plotting of standardised effects, bias‐adjusted bootstrapping method and SIDES method all perform more favourably than traditional approaches such as investigating all subgroup‐by‐treatment interactions individually or applying a global test of interaction. Therefore, these approaches should be considered to aid interpretation and provide context for observed results from subgroup analyses conducted for phase 3 clinical trials.  相似文献   

12.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design.  相似文献   

13.
Understanding the dose–response relationship is a key objective in Phase II clinical development. Yet, designing a dose‐ranging trial is a challenging task, as it requires identifying the therapeutic window and the shape of the dose–response curve for a new drug on the basis of a limited number of doses. Adaptive designs have been proposed as a solution to improve both quality and efficiency of Phase II trials as they give the possibility to select the dose to be tested as the trial goes. In this article, we present a ‘shapebased’ two‐stage adaptive trial design where the doses to be tested in the second stage are determined based on the correlation observed between efficacy of the doses tested in the first stage and a set of pre‐specified candidate dose–response profiles. At the end of the trial, the data are analyzed using the generalized MCP‐Mod approach in order to account for model uncertainty. A simulation study shows that this approach gives more precise estimates of a desired target dose (e.g. ED70) than a single‐stage (fixed‐dose) design and performs as well as a two‐stage D‐optimal design. We present the results of an adaptive model‐based dose‐ranging trial in multiple sclerosis that motivated this research and was conducted using the presented methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Biostatisticians recognize the importance of precise definitions of technical terms in randomized controlled clinical trial (RCCT) protocols, statistical analysis plans, and so on, in part because definitions are a foundation for subsequent actions. Imprecise definitions can be a source of controversies about appropriate statistical methods, interpretation of results, and extrapolations to larger populations. This paper presents precise definitions of some familiar terms and definitions of some new terms, some perhaps controversial. The glossary contains definitions that can be copied into a protocol, statistical analysis plan, or similar document and customized. The definitions were motivated and illustrated in the context of a longitudinal RCCT in which some randomized enrollees are non‐adherent, receive a corrupted treatment, or withdraw prematurely. The definitions can be adapted for use in a much wider set of RCCTs. New terms can be used in place of controversial terms, for example, subject. We define terms specifying a person's progress through RCCT phases and that precisely define the RCCT's phases and milestones. We define terms that distinguish between subsets of an RCCT's enrollees and a much larger patient population. ‘The intention‐to‐treat (ITT) principle’ has multiple interpretations that can be distilled to the definitions of the ‘ITT analysis set of randomized enrollees’. Most differences among interpretations of ‘the’ ITT principle stem from an RCCT's primary objective (mainly efficacy versus effectiveness). Four different ‘authoritative’ definitions of ITT analysis set of randomized enrollees illustrate the variety of interpretations. We propose a separate specification of the analysis set of data that will be used in a specific analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a simulation study is conducted to systematically investigate the impact of different types of missing data on six different statistical analyses: four different likelihood‐based linear mixed effects models and analysis of covariance (ANCOVA) using two different data sets, in non‐inferiority trial settings for the analysis of longitudinal continuous data. ANCOVA is valid when the missing data are completely at random. Likelihood‐based linear mixed effects model approaches are valid when the missing data are at random. Pattern‐mixture model (PMM) was developed to incorporate non‐random missing mechanism. Our simulations suggest that two linear mixed effects models using unstructured covariance matrix for within‐subject correlation with no random effects or first‐order autoregressive covariance matrix for within‐subject correlation with random coefficient effects provide well control of type 1 error (T1E) rate when the missing data are completely at random or at random. ANCOVA using last observation carried forward imputed data set is the worst method in terms of bias and T1E rate. PMM does not show much improvement on controlling T1E rate compared with other linear mixed effects models when the missing data are not at random but is markedly inferior when the missing data are at random. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A draft addendum to ICH E9 has been released for public consultation in August 2017. The addendum focuses on two topics particularly relevant for randomized confirmatory clinical trials: estimands and sensitivity analyses. The need to amend ICH E9 grew out of the realization of a lack of alignment between the objectives of a clinical trial stated in the protocol and the accompanying quantification of the “treatment effect” reported in a regulatory submission. We embed time‐to‐event endpoints in the estimand framework and discuss how the four estimand attributes described in the addendum apply to time‐to‐event endpoints. We point out that if the proportional hazards assumption is not met, the estimand targeted by the most prevalent methods used to analyze time‐to‐event endpoints, logrank test, and Cox regression depends on the censoring distribution. We discuss for a large randomized clinical trial how the analyses for the primary and secondary endpoints as well as the sensitivity analyses actually performed in the trial can be seen in the context of the addendum. To the best of our knowledge, this is the first attempt to do so for a trial with a time‐to‐event endpoint. Questions that remain open with the addendum for time‐to‐event endpoints and beyond are formulated, and recommendations for planning of future trials are given. We hope that this will provide a contribution to developing a common framework based on the final version of the addendum that can be applied to design, protocols, statistical analysis plans, and clinical study reports in the future.  相似文献   

17.
Crossover designs have some advantages over standard clinical trial designs and they are often used in trials evaluating the efficacy of treatments for infertility. However, clinical trials of infertility treatments violate a fundamental condition of crossover designs, because women who become pregnant in the first treatment period are not treated in the second period. In previous research, to deal with this problem, some new designs, such as re‐randomization designs, and analysis methods including the logistic mixture model and the beta‐binomial mixture model were proposed. Although the performance of these designs and methods has previously been evaluated in large‐scale clinical trials with sample sizes of more than 1000 per group, the actual sample sizes of infertility treatment trials are usually around 100 per group. The most appropriate design and analysis for these moderate‐scale clinical trials are currently unclear. In this study, we conducted simulation studies to determine the appropriate design and analysis method of moderate‐scale clinical trials for irreversible endpoints by evaluating the statistical power and bias in the treatment effect estimates. The Mantel–Haenszel method had similar power and bias to the logistic mixture model. The crossover designs had the highest power and the smallest bias. We recommend using a combination of the crossover design and the Mantel–Haenszel method for two‐period, two‐treatment clinical trials with irreversible endpoints. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract. The cross‐validation (CV) criterion is known to be asecond‐order unbiased estimator of the risk function measuring the discrepancy between the candidate model and the true model, as well as the generalized information criterion (GIC) and the extended information criterion (EIC). In the present article, we show that the 2kth‐order unbiased estimator can be obtained using a linear combination from the leave‐one‐out CV criterion to the leave‐k‐out CV criterion. The proposed scheme is unique in that a bias smaller than that of a jackknife method can be obtained without any analytic calculation, that is, it is not necessary to obtain the explicit form of several terms in an asymptotic expansion of the bias. Furthermore, the proposed criterion can be regarded as a finite correction of a bias‐corrected CV criterion by using scalar coefficients in a bias‐corrected EIC obtained by the bootstrap iteration.  相似文献   

19.
Clinical trials of experimental treatments must be designed with primary endpoints that directly measure clinical benefit for patients. In many disease areas, the recognised gold standard primary endpoint can take many years to mature, leading to challenges in the conduct and quality of clinical studies. There is increasing interest in using shorter‐term surrogate endpoints as substitutes for costly long‐term clinical trial endpoints; such surrogates need to be selected according to biological plausibility, as well as the ability to reliably predict the unobserved treatment effect on the long‐term endpoint. A number of statistical methods to evaluate this prediction have been proposed; this paper uses a simulation study to explore one such method in the context of time‐to‐event surrogates for a time‐to‐event true endpoint. This two‐stage meta‐analytic copula method has been extensively studied for time‐to‐event surrogate endpoints with one event of interest, but thus far has not been explored for the assessment of surrogates which have multiple events of interest, such as those incorporating information directly from the true clinical endpoint. We assess the sensitivity of the method to various factors including strength of association between endpoints, the quantity of data available, and the effect of censoring. In particular, we consider scenarios where there exist very little data on which to assess surrogacy. Results show that the two‐stage meta‐analytic copula method performs well under certain circumstances and could be considered useful in practice, but demonstrates limitations that may prevent universal use.  相似文献   

20.
Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. This assumption not only affects the analysis part but also the sample size calculation. The presence of delayed effects causes a change in the hazard ratio while the trial is ongoing since at the beginning we do not observe any difference between treatment arms, and after some unknown time point, the differences between treatment arms will start to appear. Hence, the proportional hazards assumption no longer holds, and both sample size calculation and analysis methods to be used should be reconsidered. The weighted log‐rank test allows a weighting for early, middle, and late differences through the Fleming and Harrington class of weights and is proven to be more efficient when the proportional hazards assumption does not hold. The Fleming and Harrington class of weights, along with the estimated delay, can be incorporated into the sample size calculation in order to maintain the desired power once the treatment arm differences start to appear. In this article, we explore the impact of delayed effects in group sequential and adaptive group sequential designs and make an empirical evaluation in terms of power and type‐I error rate of the of the weighted log‐rank test in a simulated scenario with fixed values of the Fleming and Harrington class of weights. We also give some practical recommendations regarding which methodology should be used in the presence of delayed effects depending on certain characteristics of the trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号