首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a fast tabu search algorithm to minimize makespan in a flow shop problem with blocking. Some properties of the problem associated with the blocks of jobs have been presented and discussed. These properties allow us to propose a specific neighbourhood of algorithms. Also, the multimoves are used that consist in performing several moves simultaneously in a single iteration and guide the search process to more promising areas of the solutions space, where good solutions can be found. It allow us to accelerate the convergence of the algorithm. Besides, a dynamic tabu list is proposed that assists additionally to avoid being trapped at a local optimum. The proposed algorithms are empirically evaluated and found to be relatively more effective in finding better solutions than attained by the leading approaches in a much shorter time. The presented ideas can be applied in many local search procedures.  相似文献   

2.
Quan-Ke Pan 《Omega》2012,40(2):166-180
Lot-streaming flow shops have important applications in different industries including textile, plastic, chemical, semiconductor and many others. This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling and no-idling production cases. The objective is to minimize the maximum completion time or makespan. To solve this important practical problem, a novel estimation of distribution algorithm (EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient initialization scheme based on the NEH heuristic is presented to construct an initial population with a certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the algorithm search towards good solutions by taking into account both job permutation and similar blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a speed-up method is presented to reduce the computational effort needed for the local search technique and the NEH-based heuristics. A comparative evaluation is carried out with the best performing algorithms from the literature. The results show that the proposed EDA is very effective in comparison after comprehensive computational and statistical analyses.  相似文献   

3.
The flowshop scheduling problem (FSP) has been widely studied in the literature and many techniques for its solution have been proposed. Some authors have concluded that genetic algorithms are not suitable for this hard, combinatorial problem unless hybridization is used. This work proposes new genetic algorithms for solving the permutation FSP that prove to be competitive when compared to many other well known algorithms. The optimization criterion considered is the minimization of the total completion time or makespan (CmaxCmax). We show a robust genetic algorithm and a fast hybrid implementation. These algorithms use new genetic operators, advanced techniques like hybridization with local search and an efficient population initialization as well as a new generational scheme. A complete evaluation of the different parameters and operators of the algorithms by means of a Design of Experiments approach is also given. The algorithm's effectiveness is compared against 11 other methods, including genetic algorithms, tabu search, simulated annealing and other advanced and recent techniques. For the evaluations we use Taillard's well known standard benchmark. The results show that the proposed algorithms are very effective and at the same time are easy to implement.  相似文献   

4.
This paper addresses the strip packing problem, which has a wide range of real-world applications. Our proposed algorithm is a hybrid metaheuristic that combines an improved heuristic algorithm with a variable neighbourhood search. Different neighbourhoods are constructed based on the concept of block patterns. The proposed algorithm has three interesting features. First, a least-waste strategy is used to improve the constructive heuristics. Second, a better sorting sequence is selected to generate an initial solution. Finally, different neighbourhoods are constructed based on block patterns. The computational results from a diverse set of problem instances show that the proposed algorithm performs better than algorithms reported in the literature for most of the problem sets compared.  相似文献   

5.

Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limited. In this paper, the proportionate case is considered where a task requires a fixed processing time independent of the job identity. A novel highly efficient solution representation is developed for the problem. An ant colony optimization model based on this representation is proposed with makespan minimization objective. It carries out a random exploration of the solution space and allows to search for good solution characteristics in a less time-consuming way. The algorithm performs full exploitation of search knowledge, and it successfully incorporates problem knowledge. To increase solution quality, a local exploration approach analogous to a local search, is further employed on the solution constructed. The proposed algorithm is tested over 100 benchmark instances from the literature. It outperforms the current state-of-the-art algorithm both in terms of solution quality and computational time.

  相似文献   

6.
This paper considers an energy-efficient bi-objective unrelated parallel machine scheduling problem to minimize both makespan and total energy consumption. The parallel machines are speed-scaling. To solve the problem, we propose a memetic differential evolution (MDE) algorithm. Since the problem involves assigning jobs to machines and selecting an appropriate processing speed level for each job, we characterize each individual by two vectors: a job-machine assignment vector and a speed vector. To accelerate the convergence of the algorithm, only the speed vector of each individual evolves and a list scheduling heuristic is applied to derive its job-machine assignment vector based on its speed vector. To further enhance the algorithm, we propose efficient speed adjusting and job-machine swap heuristics and integrate them into the algorithm as a local search approach by an adaptive meta-Lamarckian learning strategy. Computational results reveal that the incorporation of list scheduling heuristic and local search greatly strengthens the algorithm. Computational experiments also show that the proposed MDE algorithm outperforms SPEA-II and NSGA-II significantly.  相似文献   

7.
We propose new local search algorithms for minimum makespan parallel machine scheduling problems, which perform multiple exchanges of jobs among machines. Inspired by the work of Thompson and Orlin (1989) on cyclic transfer neighborhood structures, we model multiple exchanges of jobs as special disjoint cycles and paths in a suitably defined improvement graph, by extending definitions and properties introduced in the context of vehicle routing problems (Thompson and Psaraftis, 1993) and of the capacitated minimum spanning tree problem (Ahuja et al., 2001). Several algorithms for searching the neighborhood are suggested.We report the results of a wide computational experimentation, on different families of benchmark instances, performed for the case of identical machines. This problem has been selected as a case study to perform a comparison among the alternative algorithms, and to discover families of instances for which the proposed neighborhood may be promising in practice. Based on the results of the experiments, we can suggest which among the many possible variants of the proposed approaches may be more promising for developing local search algorithms based on multi-exchange moves for related problems. Also, on some families of instances, which are very hard to solve exactly, the most promising multi-exchange algorithms were observed to dominate, in solution quality and in computational time, competitive benchmark heuristics.  相似文献   

8.
订单接受问题广泛存在于生产管理中,而现有多节点订单接受问题中大多不考虑缓冲区约束对订单接受的影响。针对这一问题,以缓冲区约束的多节点生产为背景,建立了订单接受模型。利用改进NEH算法、离散和声搜索算法和变邻域搜索的混合算法对模型进行求解。实验结果显示,当问题规模较小时,算法取得较好的计算效果。问题规模较大时,求解效果一般。缓冲区的大小对订单完工时间影响较小,与无限缓冲区的计算结果相似。混合算法具有较好的求解速度,能够有效求解问题模型。  相似文献   

9.
用混合遗传算法求解物流配送路径优化问题的研究   总被引:75,自引:5,他引:75  
论文建立了物流配送路径优化问题的数学模型,并针对遗传算法在局部搜索能力方面的不足,提出将爬山算法与遗传算法相结合,从而构造了求解物流配送路径优化问题的混合遗传算法,并进行了实验计算。计算结果表明,用混合遗传算法求解物流配送路径优化问题,可以在一定程度上克服遗传算法在局部搜索能力方面的不足和爬山算法在全局搜索能力方面的不足,从而得到质量较高的解。  相似文献   

10.
In this paper, a bilevel programming model is proposed to study a problem of market regulation through government intervention. One of the main characteristics of the problem herein analyzed is that the government monopolizes the raw material in one industry, and competes in another industry with private firms for the production of commodities. Under this scheme, the government controls a state-owned firm to balance the market; that is, to minimize the difference between the produced and demanded commodities. On the other hand, a regulatory organization that coordinates private firms aims to maximize the total profit by deciding the amount of raw material bought from the a state-owned firm. Two equivalent single-level reformulations are proposed to solve the problem. The first reformulation is based on the strong duality condition of the lower level and results in a continuous non-linear model. The second reformulation resorts to the complementarity slackness optimality constraints yielding a mixed-integer linear model. Additionally, three heuristic algorithms are designed to obtain good-quality solutions with low computational effort. In this problem, the feasible region of the dual problem associated to the follower is independent from the leader’s decision. Therefore, the proposed heuristics exploit this particular characteristic of the bilevel model. Moreover, the third heuristic hybridizes the other two algorithms to enhance its performance. Extensive computational experimentation is carried out to measure the efficiency of the proposed solution methodologies. A case study based on the Mexican petrochemical industry is presented. Additional instances generated from the case study are considered to validate the robustness of the proposed heuristic algorithms. Numerical results indicate that the hybrid algorithm outperforms the other two heuristics. However, all of them demonstrate to be good alternatives for solving the problem. Additionally, optimal solutions of all the instances are obtained by using good quality solutions (given by the hybrid algorithm) as initial solutions when solving the second reformulation via a general purpose solver.  相似文献   

11.
The problem of scheduling in a flowshop, where setup, processing and removal times are separable, is considered with the objective of minimizing makespan. Heuristic algorithms are developed by the introduction of simplifying assumptions into the scheduling problem under study. An improvement method is incorporated in the heuristics to enhance the quality of their solutions. The proposed heuristics and an existing heuristic are evaluated by a large number of randomly generated problems. The results of an extensive computational investigation for various values of parameters are presented.  相似文献   

12.
多车场带时间窗车辆路径问题的变邻域搜索算法   总被引:3,自引:1,他引:2  
多车场带时间窗车辆路径问题是车辆路径问题集合中的一个极为复杂、且仍未得到较好解决的问题。针对这一问题,建立了它的整数规划数学模型,提出了一种改进型变邻域搜索算法。该算法在初始解的构造阶段采用聚类方法完成客户的分配,运用混合算子进行局部搜索,通过后优化过程增强寻优效果,引入模拟退火模型对新解的接受进行控制。最后,在Cordeau提出的标准用例上对改进型变邻域算法进行了实验,实验结果更新了大部分目前该问题的最优解,并在算法的稳定性和求解时间上体现出一定优势。实验表明,该算法是一种求解多车场带时间窗车辆路径问题的有效方法。  相似文献   

13.
Quan-Ke Pan  Ling Wang 《Omega》2012,40(2):218-229
The blocking flowshop scheduling problem with makespan criterion has important applications in a variety of industrial systems. Heuristics that explore specific characteristics of the problem are essential for many practical systems to find good solutions with limited computational effort. This paper first presents two simple constructive heuristics, namely weighted profile fitting (wPF) and PW, based on the profile fitting (PF) approach of McCormick et al. [Sequencing in an assembly line with blocking to minimize cycle time. Operations Research 1989;37:925-36] and the characteristics of the problem. Then, three improved constructive heuristics, called PF-NEH, wPF-NEH, and PW-NEH, are proposed by combining the PF, wPF, and PW with the enumeration procedure of the Nawaz-Enscore-Ham (NEH) heuristic [A heuristic algorithm for the m-machine, n-job flow shop sequencing problem. OMEGA-International Journal of Management Science 1983;11:91-5] in an effective way. Thirdly, three composite heuristics i.e., PF-NEHLS, wPF-NEHLS, and PW-NEHLS, are developed by using the insertion-based local search method to improve the solutions generated by the constructive heuristics. Computational simulations and comparisons are carried out based on the well-known flowshop benchmarks of Taillard [Benchmarks for basic scheduling problems. European Journal of Operation Research 1993;64:278-85] that are considered as blocking flowshop instances. The results show that the presented constructive heuristics perform significantly better than the existing ones, and the proposed composite heuristics further improve the presented constructive heuristics by a considerable margin. In addition, 17 new best-known solutions for Taillard benchmarks with large scale are found by the presented heuristics.  相似文献   

14.
Hybrid Evolutionary Algorithms for Graph Coloring   总被引:19,自引:2,他引:17  
A recent and very promising approach for combinatorial optimization is to embed local search into the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring problem. These algorithms combine a new class of highly specialized crossover operators and a well-known tabu search algorithm. Experiments of such a hybrid algorithm are carried out on large DIMACS Challenge benchmark graphs. Results prove very competitive with and even better than those of state-of-the-art algorithms. Analysis of the behavior of the algorithm sheds light on ways to further improvement.  相似文献   

15.
This paper presents a multi-neighborhood based path relinking algorithm (MN-PR) for solving the two-sided assembly line balancing problem. By incorporating an effective local search into a path relinking framework, the proposed MN-PR algorithm integrates a number of distinguishing features, such as a multi-neighborhood based local search procedure, a dedicated path relinking operator to generate new solutions and a strategy to fix an infeasible solution generated by the path relinking procedure to a feasible one. Our proposed MN-PR algorithm is tested on a set of totally 45 public instances widely used in the literature. Comparisons with other reference algorithms show the efficacy of the proposed algorithm in terms of the solution quality. Particularly, the proposed MN-PR algorithm is able to improve the best upper bounds for one instance with 65 tasks and 326 cycle time. This paper also presents an analysis to show the significance of the main components of the proposed algorithm.  相似文献   

16.
In the no-idle flowshop, machines cannot be idle after finishing one job and before starting the next one. Therefore, start times of jobs must be delayed to guarantee this constraint. In practice machines show this behavior as it might be technically unfeasible or uneconomical to stop a machine in between jobs. This has important ramifications in the modern industry including fiber glass processing, foundries, production of integrated circuits and the steel making industry, among others. However, to assume that all machines in the shop have this no-idle constraint is not realistic. To the best of our knowledge, this is the first paper to study the mixed no-idle extension where only some machines have the no-idle constraint. We present a mixed integer programming model for this new problem and the equations to calculate the makespan. We also propose a set of formulas to accelerate the calculation of insertions that is used both in heuristics as well as in the local search procedures. An effective iterated greedy (IG) algorithm is proposed. We use an NEH-based heuristic to construct a high quality initial solution. A local search using the proposed accelerations is employed to emphasize intensification and exploration in the IG. A new destruction and construction procedure is also shown. To evaluate the proposed algorithm, we present several adaptations of other well-known and recent metaheuristics for the problem and conduct a comprehensive set of computational and statistical experiments with a total of 1750 instances. The results show that the proposed IG algorithm outperforms existing methods in the no-idle and in the mixed no-idle scenarios by a significant margin.  相似文献   

17.
This paper considers an energy-efficient no-wait permutation flow shop scheduling problem to minimize makespan and total energy consumption, simultaneously. The processing speeds of machines can be dynamically adjusted for different jobs. In general, lower processing speeds require less energy consumption but result in longer processing times, while higher speeds take the opposite effect. To reach the Pareto front of the problem, we propose an adaptive multi-objective variable neighborhood search (AM-VNS) algorithm. Specifically, we first design two basic speed adjusting heuristics which can reduce the energy consumption of a given solution without worsening its makespan. Two widely used neighborhood-generating operations, i.e., insertion and swap, are adapted and integrated into the variable neighborhood descent phase. With respect to their executing order, two variable neighborhood descent structures can be designed. We adopt an adaptive mechanism to dynamically determine which structure will be selected to handle the current solution. To further improve the performance of the algorithm, we develop a novel problem-specific shake procedure. We also introduce accelerating techniques to speed up the algorithm. Computational results show that the AM-VNS algorithm outperforms multi-objective evolutionary algorithms NSGA-II and SPEA-II.  相似文献   

18.
Eva Vallada  Rubn Ruiz 《Omega》2010,38(1-2):57-67
In this work three genetic algorithms are presented for the permutation flowshop scheduling problem with total tardiness minimisation criterion. The algorithms include advanced techniques like path relinking, local search and a procedure to control the diversity of the population. We also include a speed up procedure in order to reduce the computational effort needed for the local search technique, which results in large CPU time savings. A complete calibration of the different parameters and operators of the proposed algorithms by means of a design of experiments approach is also given. We carry out a comparative evaluation with the best methods that can be found in the literature for the total tardiness objective, and with adaptations of other state-of-the-art methods originally proposed for other objectives, mainly makespan. All the methods have been implemented with and without the speed up procedure in order to test its effect. The results show that the proposed algorithms are very effective, outperforming the remaining methods of the comparison by a considerable margin.  相似文献   

19.
企业的置换装配线调度问题(Permutation Assembly-line Scheduling Problem,PASP)是一类典型的NP-hard型生产调度问题,是现代集成制造系统CIMS极为关心的问题。该问题可以具体描述为n个工件要在m台机器上加工,每个工件需要经过m道工序,每道工序要求不同的机器,这n个工件通过m台机器的顺序相同,它们在每台机器上的加工顺序也相同,问题的主要目标是找到n个工件在每台机器上的最优加工顺序,使得最大完工时间最小。由于PASP问题的NP-hard性质,本文使用遗传算法对其进行求解。尽管遗传算法常用以求解调度问题,但其选择与交叉机制易导致局部最优及收敛慢。因此,本文提出基于区块挖掘与重组的改进遗传算法用于求解置换装配线调度问题。首先通过关联规则挖掘出不同的优秀基因,然后将具有较优结果的基因组合为优势区块,产生具优势的人工解,并引入高收敛性的局部搜索方法,提高搜索到最优解的机会与收敛效率。本文以OR-Library中Taillard标准测试例来验证改进遗传算法的求解质量与效率,结果证明:本文所提算法与其它求解调度问题的现有5种知名算法相比,不仅收敛速度较快,同时求解质量优于它们。  相似文献   

20.
The well-known NEH heuristic from Nawaz, Enscore and Ham proposed in 1983 has been recognized as the highest performing method for the permutation flowshop scheduling problem under the makespan minimization criterion. This performance lead is maintained even today when compared against contemporary and more complex heuristics as shown in recent studies. In this paper we show five new methods that outperform NEH as supported by careful statistical analyses using the well-known instances of Taillard. The proposed methods try to counter the excessive greediness of NEH by carrying out re-insertions of already inserted jobs at some points in the construction of the solution. The five proposed heuristics range from extensions that are slightly slower than NEH in most tested instances to more comprehensive methods based on local search that yield excellent results at the expense of some added computational time. Additionally, NEH has been profusely used in the flowshop scheduling literature as a seed sequence in high performing metaheuristics. We demonstrate that using some of our proposed heuristics as seeds yields better final results in comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号