首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current practice in carcinogen bioassay calls for exposure of experimental animals at doses up to and including the maximum tolerated dose (MTD). Such studies have been used to compute measures of carcinogenic potency such as the TD50 as well as unit risk factors such as q 1 * for predicting low-dose risks. Recent studies have indicated that these measures of carcinogenic potency are highly correlated with the MTD. Carcinogenic potency has also been shown to be correlated with indicators of mutagenicity and toxicity. Correlation of the MTDs for rats and mice implies a corresponding correlation in TD50 values for these two species. The implications of these results for cancer risk assessment are examined in light of the large variation in potency among chemicals known to induce tumors in rodents.  相似文献   

2.
Developmental anomalies resulting from prenatal toxicity can be manifested in terms of both malformations among surviving offspring and prenatal death. Although these two endpoints have traditionally been analyzed separately in the assessment of risk, multivariate methods of risk characterization have recently been proposed. We examined this and other issues in developmental toxicity risk assessment by evaluating the accuracy and precision of estimates of the effective dose ( ED 05) and the benchmark dose ( BMD 05) using computer simulation. Our results indicated that different variance structures (Dirichlet-trinomial and generalized linear model) used to characterize overdispersion yielded comparable results when fitting joint dose response models based on generalized estimating equations. (The choice of variance structure in separate modeling was also not critical.) However, using the Rao-Scott transformation to eliminate overdispersion tended to produce estimates of the ED 05 with reduced bias and mean squared error. Because joint modeling ensures that the ED 05 for overall toxicity (based on both malformations and prenatal death) is always less than the ED 05 for either malformations or prenatal death, joint modeling is preferred to separate modeling for risk assessment purposes.  相似文献   

3.
There has been considerable discussion regarding the conservativeness of low-dose cancer risk estimates based upon linear extrapolation from upper confidence limits. Various groups have expressed a need for best (point) estimates of cancer risk in order to improve risk/benefit decisions. Point estimates of carcinogenic potency obtained from maximum likelihood estimates of low-dose slope may be highly unstable, being sensitive both to the choice of the dose–response model and possibly to minimal perturbations of the data. For carcinogens that augment background carcinogenic processes and/or for mutagenic carcinogens, at low doses the tumor incidence versus target tissue dose is expected to be linear. Pharmacokinetic data may be needed to identify and adjust for exposure-dose nonlinearities. Based on the assumption that the dose response is linear over low doses, a stable point estimate for low-dose cancer risk is proposed. Since various models give similar estimates of risk down to levels of 1%, a stable estimate of the low-dose cancer slope is provided by ŝ = 0.01/ED01, where ED01 is the dose corresponding to an excess cancer risk of 1%. Thus, low-dose estimates of cancer risk are obtained by, risk = ŝ × dose. The proposed procedure is similar to one which has been utilized in the past by the Center for Food Safety and Applied Nutrition, Food and Drug Administration. The upper confidence limit, s , corresponding to this point estimate of low-dose slope is similar to the upper limit, q 1 obtained from the generalized multistage model. The advantage of the proposed procedure is that ŝ provides stable estimates of low-dose carcinogenic potency, which are not unduly influenced by small perturbations of the tumor incidence rates, unlike 1.  相似文献   

4.
We estimated benzene risk using a novel framework of risk assessment that employed the measurement of radiation dose equivalents to benzene metabolites and a PBPK model. The highest risks for 1 μg/m3 and 3.2 mg/m3 life time exposure of benzene estimated with a linear regression were 5.4 × 10−7 and 1.3 × 10−3, respectively. Even though these estimates were based on in vitro chromosome aberration test data, they were about one-sixth to one-fourteenth that from other studies and represent a fairly good estimate by using radiation equivalent coefficient as an "internal standard."  相似文献   

5.
Parodi et al. (1) and Zeise et al. (2) found a surprising statistical correlation (or association) between acute toxicity and carcinogenic potency. In order to shed light on the questions of whether or not it is a causal correlation, and whether or not it is a statistical or tautological artifact, we have compared the correlations for the NCI/NTP data set with those for chemicals not in this set. Carcinogenic potencies were taken from the Gold et al. database. We find a weak correlation with an average value of TD50/LD50= 0.04 for the non-NCI data set, compared with TD50/LD50= 0.15 for the NCI data set. We conclude that it is not easy to distinguish types of carcinogens on the basis of whether or not they are acutely toxic.  相似文献   

6.
Human exposure to halons and halon replacement chemicals is often regulated on the basis of cardiac sensitization potential. The dose-response data obtained from animal testing are used to determine the no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL) values. This approach alone does not provide the information necessary to evaluate the cardiac sensitization potential for the chemical of interest under a variety of exposure concentrations and durations. In order to provide a tool for decision-makers and regulators tasked with setting exposure guidelines for halon replacement chemicals, a quantitative approach was established which allowed exposures to be assessed in terms of the chemical concentrations in blood during the exposure. A physiologically-based pharmacokinetic (PBPK) model was used to simulate blood concentrations of Halon 1301 (bromotrifluoromethane, CF3Br), HFC-125 (pentafluoroethane, CHF2CF3), HFC-227ea (heptafluoropropane, CF3CHFCF3), HCFC-123 (dichlorotrifluoroethane, CHCl2CF3), and CF3I (trifluoroiodomethane) during inhalation exposures. This work demonstrates a quantitative approach for use in linking chemical inhalation exposures to the levels of chemical in blood achieved during the exposure.  相似文献   

7.
Calculation of Benchmark Doses from Continuous Data   总被引:20,自引:0,他引:20  
A benchmark dose (BMD) is the dose of a substance that corresponds to a prescribed increase in the response (called the benchmark response or BMR) of a health effect. A statistical lower bound on the benchmark dose (BMDL) has been proposed as a replacement for the no-observed-adverse-effect-level (NOAEL) in setting acceptable human exposure levels. A method is developed in this paper for calculating BMDs and BMDLs from continuous data in a manner that is consistent with those calculated from quantal data. The method involves defining an abnormal response, either directly by specifying a cutoff x0 that separates continuous responses into normal and abnormal categories, or indirectly by specifying the proportion P0 of abnormal responses expected among unexposed subjects. The method does not involve actually dichotomizing individual continuous responses into quantal responses, and in certain cases can be applied to continuous data in summarized form (e.g., means and standard deviations of continuous responses among subjects in discrete dose groups). In addition to specifying the BMR and either x0 or P0 , the method requires specification of the distribution of continuous responses, including specification of the dose-response θ(d) for a measure of central tendency. A method is illustrated for selecting θ(d) to make the probability of an abnormal response any desired dose-response function. This enables the same dose-response model (Weibull, log-logistic, etc.) to be used for the probability of an abnormal response, regardless of whether the underlying data are continuous or quantal. Whenever the continuous responses are normally distributed with standard deviation σ (independent of dose), the method is equivalent to defining the BMD as the dose corresponding to a prescribed change in the mean response relative to σ.  相似文献   

8.
A Monte Carlo simulation is incorporated into a risk assessment for trichloroethylene (TCE) using physiologically-based pharmacokinetic (PBPK) modeling coupled with the linearized multistage model to derive human carcinogenic risk extrapolations. The Monte Carlo technique incorporates physiological parameter variability to produce a statistically derived range of risk estimates which quantifies specific uncertainties associated with PBPK risk assessment approaches. Both inhalation and ingestion exposure routes are addressed. Simulated exposure scenarios were consistent with those used by the Environmental Protection Agency (EPA) in their TCE risk assessment. Mean values of physiological parameters were gathered from the literature for both mice (carcinogenic bioassay subjects) and for humans. Realistic physiological value distributions were assumed using existing data on variability. Mouse cancer bioassay data were correlated to total TCE metabolized and area-under-the-curve (blood concentration) trichloroacetic acid (TCA) as determined by a mouse PBPK model. These internal dose metrics were used in a linearized multistage model analysis to determine dose metric values corresponding to 10-6 lifetime excess cancer risk. Using a human PBPK model, these metabolized doses were then extrapolated to equivalent human exposures (inhalation and ingestion). The Monte Carlo iterations with varying mouse and human physiological parameters produced a range of human exposure concentrations producing a 10-6 risk.  相似文献   

9.
The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity ( Qinf ) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Qinf is extremely small (median = 6.5 × 10−12 ID50; mean = 1.8 × 10−4 ID50), corresponding to an average probability of 1.3 × 10−4 that an incident results in ≥1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.  相似文献   

10.
Mark Nicas 《Risk analysis》1996,16(4):527-538
An adverse health impact is often treated as a binary variable (response vs. no response), in which case the risk of response is defined as a monotonically increasing function R of the dose received D. For a population of size N , specifying the forms of R(D) and of the probability density function (pdf) for D allows determination of the pdf for risk, and computation of the mean and variance of the distribution of incidence, where the latter parameters are denoted E[S N] and Var[ S N], respectively. The distribution of S N describes uncertainty in the future incidence value. Given variability in dose (and risk) among population members, the distribution of incidence is Poisson-binomial. However, depending on the value of E[S N], the distribution of incidence is adequately approximated by a Poisson distribution with parameter μ= E[S N], or by a normal distribution with mean and variance equal to E[S N] and Var[ S N]. The general analytical framework is applied to occupational infection by Mycobacterium tuberculosis (M. tb). Tuberculosis is transmitted by inhalation of 1–5 μm particles carrying viable M. tb bacilli. Infection risk has traditionally been modeled by the expression: R(D) = 1 – exp(– D ), where D is the expected number of bacilli that deposit in the pulmonary region. This model assumes that the infectious dose is one bacillus. The beta pdf and the gamma pdf are shown to be reasonable and especially convenient forms for modeling the distribution of the expected cumulative dose across a large healthcare worker cohort. Use of the the analytical framework is illustrated by estimating the efficacy of different respiratory protective devices in reducing healthcare worker infection risk.  相似文献   

11.
Because experiments with Bacillus anthracis are costly and dangerous, the scientific, public health, and engineering communities are served by thorough collation and analysis of experiments reported in the open literature. This study identifies available dose-response data from the open literature for inhalation exposure to B. anthracis and, via dose-response modeling, characterizes the response of nonhuman animal models to challenges. Two studies involving four data sets amenable to dose-response modeling were found in the literature: two data sets of response of guinea pigs to intranasal dosing with the Vollum and ATCC-6605 strains, one set of responses of rhesus monkeys to aerosol exposure to the Vollum strain, and one data set of guinea pig response to aerosol exposure to the Vollum strain. None of the data sets exhibited overdispersion and all but one were best fit by an exponential dose-response model. The beta-Poisson dose-response model provided the best fit to the remaining data set. As indicated in prior studies, the response to aerosol challenges is a strong function of aerosol diameter. For guinea pigs, the LD50 increases with aerosol size for aerosols at and above 4.5 μm. For both rhesus monkeys and guinea pigs there is about a 15-fold increase in LD50 when aerosol size is increased from 1 μm to 12 μm. Future experimental research and dose-response modeling should be performed to quantify differences in responses of subpopulations to B. anthracis and to generate data allowing development of interspecies correction factors.  相似文献   

12.
The relative contribution of four influenza virus exposure pathways—(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes—must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 106 mL−1, pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 106 mL−1, pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.  相似文献   

13.
Trichloroacetic acid (TCA) is major metabolite of trichloroethylene (TRI) thought to contribute to its hepatocarcinogenic effects in mice. Recent studies have shown that peak blood concentrations of TCA in rats do not occur until approximately 12 hours following an oral dose of TRI. However, blood concentrations of TRI reach maximum within an hour and are nondetectable after 2 hours.(1) The results of study which examined the enterohepatic recirculation (EHC) of the principle TRI metabolited(2) was used to develop physiologically-based pharmacokinetic model for TRI, which includes enterohepatic recirculation of its metabolites. The model quantitatively predicts the uptake, distribution and elimination of TRI, trichloroethanol, trichloroethanol-glucuronide, and TCA and includes production of metabolites through the enterohepatic recirculation pathway. Physiologic parameters used in the model were obtained from the literature.(3.4) Parameters for TRI metabolism were taken from Fisher et al.(5) Other kinetic parameters were found in the literature or estimated from experimental data.(2) The model was calibrated to data from experiments of an earlier study where TRI was orally administered(2) Verification of the model was conducted using data on the enterohepatic recirculation of TCEOH and TCA(2) chloral hydrate data (infusion doses) from Merdink,(1) and TRI data from Templin(l) and Larson and Bull.(1)  相似文献   

14.
The existence of correlation between the carcinogenic potency and the maximum tolerated dose has been the subject of many investigations in recent years. Several attempts have been made to quantify this correlation in different bioassay experiments. By using some distributional assumptions, Krewski et al .(1) derive an analytic expression for the coefficient of correlation between the carcinogenic potency TD50 and the maximum tolerated dose. Here, we discuss the deviation that may result in using their analytical expression. By taking a more general approach we derive an expression for the correlation coefficient which includes the result of Krewski et al .(1) as a special case, and show that their expression may overestimate the correlation in some instances and yet underestimate the correlation in other instances. The proposed method is illustrated by application to a real dataset.  相似文献   

15.
16.
Concern about the degree of uncertainty and potential conservatism in deterministic point estimates of risk has prompted researchers to turn increasingly to probabilistic methods for risk assessment. With Monte Carlo simulation techniques, distributions of risk reflecting uncertainty and/or variability are generated as an alternative. In this paper the compounding of conservatism(1) between the level associated with point estimate inputs selected from probability distributions and the level associated with the deterministic value of risk calculated using these inputs is explored. Two measures of compounded conservatism are compared and contrasted. The first measure considered, F , is defined as the ratio of the risk value, R d, calculated deterministically as a function of n inputs each at the j th percentile of its probability distribution, and the risk value, R j that falls at the j th percentile of the simulated risk distribution (i.e., F=Rd/Rj). The percentile of the simulated risk distribution which corresponds to the deterministic value, Rd , serves as a second measure of compounded conservatism. Analytical results for simple products of lognormal distributions are presented. In addition, a numerical treatment of several complex cases is presented using five simulation analyses from the literature to illustrate. Overall, there are cases in which conservatism compounds dramatically for deterministic point estimates of risk constructed from upper percentiles of input parameters, as well as those for which the effect is less notable. The analytical and numerical techniques discussed are intended to help analysts explore the factors that influence the magnitude of compounding conservatism in specific cases.  相似文献   

17.
Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration ( CE ) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem  ( RE )  is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient  ( RQ = CE / RE )  are developed to determine the probability of RQ greater than 1.  相似文献   

18.
The current methods for a reference dose (RfD) determination can be enhanced through the use of biologically-based dose-response analysis. Methods developed here utilizes information from tetrachlorodibenzo- p -dioxin (TCDD) to focus on noncancer endpoints, specifically TCDD mediated immune system alterations and enzyme induction. Dose-response analysis, using the Sigmoid-Emax (EMAX) function, is applied to multiple studies to determine consistency of response. Through the use of multiple studies and statistical comparison of parameter estimates, it was demonstrated that the slope estimates across studies were very consistent. This adds confidence to the subsequent effect dose estimates. This study also compares traditional methods of risk assessment such as the NOAEL/safety factor to a modified benchmark dose approach which is introduced here. Confidence in the estimation of an effect dose (ED10) was improved through the use of multiple datasets. This is key to adding confidence to the benchmark dose estimates. In addition, the Sigmoid-Emax function when applied to dose-response data using nonlinear regression analysis provides a significantly improved fit to data increasing confidence in parameter estimates which subsequently improve effect dose estimates.  相似文献   

19.
A central part of probabilistic public health risk assessment is the selection of probability distributions for the uncertain input variables. In this paper, we apply the first-order reliability method (FORM)(1–3) as a probabilistic tool to assess the effect of probability distributions of the input random variables on the probability that risk exceeds a threshold level (termed the probability of failure) and on the relevant probabilistic sensitivities. The analysis was applied to a case study given by Thompson et al. (4) on cancer risk caused by the ingestion of benzene contaminated soil. Normal, lognormal, and uniform distributions were used in the analysis. The results show that the selection of a probability distribution function for the uncertain variables in this case study had a moderate impact on the probability that values would fall above a given threshold risk when the threshold risk is at the 50th percentile of the original distribution given by Thompson et al. (4) The impact was much greater when the threshold risk level was at the 95th percentile. The impact on uncertainty sensitivity, however, showed a reversed trend, where the impact was more appreciable for the 50th percentile of the original distribution of risk given by Thompson et al. 4 than for the 95th percentile. Nevertheless, the choice of distribution shape did not alter the order of probabilistic sensitivity of the basic uncertain variables.  相似文献   

20.
There is a need to advance our ability to characterize the risk of inhalational anthrax following a low‐dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long‐term daily low‐dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose‐response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous‐Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose‐response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号