首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In an empirical Bayes decision problem, a simple class of estimators is constructed that dominate the James-Stein

estimator, A prior distribution A is placed on a restricted (normal) class G of priors to produce a Bayes empirical Bayes estimator, The Bayes empirical Bayes estimator is smooth, admissible, and asymptotically optimal. For certain A rate of convergence to minimum Bayes risk is 0(n-1)uniformly on G. The results of a Monte Carlo study are presented to demonstrate the favorable risk bebhavior of the Bayes estimator In comparison with other competitors including the James-Stein estimator.  相似文献   

2.
Abstract

This article presents a non-stochastic version of the Generalized Ridge Regression estimator that arises from a discussion of the properties of a Generalized Ridge Regression estimator whose shrinkage parameters are found to be close to their upper bounds. The resulting estimator takes the form of a shrinkage estimator that is superior to both the Ordinary Least Squares estimator and the James-Stein estimator under certain conditions. A numerical study is provided to investigate the range of signal to noise ratio under which the new estimator dominates the James-Stein estimator with respect to the prediction mean square error.  相似文献   

3.
When estimating a normal mean vector with variance known up to a multiplicative factor, it is well known that the positive-part James-Stein estimator is not admissible, but until now, no one has been able to exhibit a uniformly better estimator. We propose here an explicit formula for the risk of the positive-part James-Stein estimator.  相似文献   

4.
The explicit form of the reference prior bayes estimator due to Yang and Ber-ger (1994) for bivariate normal covariance matrix under entropy loss is given in terms of Legendre polynomials when degrees of freedom is even and in terms of hypergeometric functions in general case. The finite series expression of the density function of the ratio of latent roots of bivariate Wishart matrix is obtained and the exact risk is compared with those of James-Stein minimax estimator and other orthogonally equivariant estimators. It is found numerically that the reference prior bayes estimator has the smallest risk among the class of equivariant estimators compared, when the ratio of the largest to the smallest population latent roots of covariance matrix lies in the middle of the interval [1, ∞]. It has larger risk than that of James-Stein minimax estimator when the ratio is large. Moreover it has larger risk than that of MLE when, for instance, degrees of freedom is 20 and the ratio lies between 4 and 8.  相似文献   

5.
The usual confidence set for p (p ≥ 3) coefficients of a linear model is known to be dominated by the James-Stein confidence sets under the assumption of spherical symmetric errors with known variance (Hwang and Chen 1986). For the same confidence-set problem but for the unknown-variance case, naturally one replaces the unknown variance by an estimator. For the normal case, many previous studies have shown numerically that the resultant James-Stein confidence sets dominate the resultant usual confidence sets, i.e., the F confidence sets. In this paper we provide a further asymptotic justification, and we discover the same advantage of the James-Stein confidence sets for normal error as well as spherically symmetric error.  相似文献   

6.
This paper considers estimation of β in the regression model y =+μ, where the error components in μ have the jointly multivariate Student-t distribution. A family of James-Stein type estimators (characterised by nonstochastic scalars) is presented. Sufficient conditions involving only X are given, under which these estimators are better (with respect to the risk under a general quadratic loss function) than the usual minimum variance unbiased estimator (MVUE) of β. Approximate expressions for the bias, the risk, the mean square error matrix and the variance-covariance matrix for the estimators in this family are obtained. A necessary and sufficient condition for the dominance of this family over MVUE is also given.  相似文献   

7.
The problem of estimating a covariance matrix is considered in this paper. Using the so-called partial Iwasawa coordinates of the covariance matrix, a new improved estimator dominating the James-Stein estimator is proposed. The results of a simulation study verifies that the new estimator provides a substantial improvement in risk under Stein's loss.  相似文献   

8.
In this paper, we consider, using technique based on Girsanov theorem, the problem of efficient estimation for the drift of subfractional Brownian motion SH ? (SHt)t ∈ [0, T]. We also construct a class of biased estimators of James-Stein type which dominate, under the usual quadratic risk, the natural maximum likelihood estimator.  相似文献   

9.
Improved James-Stein type estimation of the mean vector μ of a multovaroate Student-t population of dimension p with ν degrees of freedom is considered. In addition to the sample data, uncertain prior information on the value of the mean vector, in the form of a null hypothesis, is used for the estiamtion. The usual maximum liklihood estimator((mle) of μ is obtained and a test statistic for testing H0:μ=μ0 is derived. Based on the mle of μ and the tes statistic the preliminary test estimator (PTE), Stein-type shrinkage estimator (SE) and positive-rule shrinkage esiimator (PRSE) are defined. The bias and the quadratic risk of the estimators are evaiuated. The relative performances of the estimators are mvestigated by analyzing the risks under different condltlons It is observed that the FRSE dommates over he other three estimators, regardless of the vaiidity of the null hypothesis and the value ν.  相似文献   

10.
Let Sp × p have a Wishart distribution with parameter matrix Σ and n degrees of freedom. We consider here the problem of estimating the precision matrix Σ?1 under the loss functions L1(σ) tr (σ) - log |σ| and L2(σ) = tr (σ). James-Stein-type estimators have been derived for an arbitrary p. We also obtain an orthogonal invariant and a diagonal invariant minimax estimator under both loss functions. A Monte-Carlo simulation study indicates that the risk improvement of the orthogonal invariant estimators over the James-Stein type estimators, the Haff (1979) estimator, and the “testimator” given by Sinha and Ghosh (1987) is substantial.  相似文献   

11.
For the problem of estimating the location parameter of a p-variate spherically symmetric distribution (p>3), Hwang (1985) established the dominance of some positive-part James-Stein (1961) estimators over the usual estimator simultaneously under a very general class of loss function. Vie show that many of his results can be extended to a class of positive-part Baranchik-type estimators (1970).  相似文献   

12.
Given a general statistical model and an arbitrary quadratic loss, we propose a lower bound for the associated risk of a class of shrinkage estimators. With respect to the considered class of shrinkage estimators, this bound is optimal.In the particular case of the estimation of the location parameter of an ellipti-cally symmetric distribution, this bound can be used to find the relative improvement brought by a given estimator and the remaining possible improvement, using a Monte-Carlo method. We deduce from these results a new type of shrinkage estimators whose risk can be as close as one wants of the lower bound near a chosen pole and yet remain bounded. Some of them are good alternatives to the positive-part James-Stein estimator.  相似文献   

13.
The Paper considers estimation of the p(> 3)-variate normal mean when the variance-covariance matrix is diagonal with unknown diagonal elements. A class of James-Stein estimators is developed, and is compared with the sample mean under an empirical minimax stopping rule. Asymptotic risk expansions are provided for both the sequential sample mean and the sequential James-Stein estimators. It is shown that the James-Stein estimators dominate the sample mean in a certain asymptotic sense.  相似文献   

14.
Risk estimation is an important statistical question for the purposes of selecting a good estimator (i.e., model selection) and assessing its performance (i.e., estimating generalization error). This article introduces a general framework for cross-validation and derives distributional properties of cross-validated risk estimators in the context of estimator selection and performance assessment. Arbitrary classes of estimators are considered, including density estimators and predictors for both continuous and polychotomous outcomes. Results are provided for general full data loss functions (e.g., absolute and squared error, indicator, negative log density). A broad definition of cross-validation is used in order to cover leave-one-out cross-validation, V-fold cross-validation, Monte Carlo cross-validation, and bootstrap procedures. For estimator selection, finite sample risk bounds are derived and applied to establish the asymptotic optimality of cross-validation, in the sense that a selector based on a cross-validated risk estimator performs asymptotically as well as an optimal oracle selector based on the risk under the true, unknown data generating distribution. The asymptotic results are derived under the assumption that the size of the validation sets converges to infinity and hence do not cover leave-one-out cross-validation. For performance assessment, cross-validated risk estimators are shown to be consistent and asymptotically linear for the risk under the true data generating distribution and confidence intervals are derived for this unknown risk. Unlike previously published results, the theorems derived in this and our related articles apply to general data generating distributions, loss functions (i.e., parameters), estimators, and cross-validation procedures.  相似文献   

15.
A method called FICYREG of estimating regression coefficients is introduced. This is a generalization to the multivariate regression problem of the James-Stein estimator. When suitably représentés FICYREG emerges as a rule in which the canonical variates and canonical correlations have an intrinsic role to play. By exploiting these objects FICYREG is able to achieve stability against the influence of the “noise” present in problems where the responses are correlated so that some of the response vector's canonical variates will be essentially independent of all others including the predictors. The least squares (LS) estimator is, by contrast, highly sensitive to this noise. The use of FICYREG is illustrated in terms of an example, and its peformance is compared to the LS estimator when a quadratic loss function is assumed. The cases of both fixed and random predictors are considered. Overall, FICYREG outperforms the LS estimator.  相似文献   

16.
This paper considers simultaneous estimation of multivariate normal mean vector using Zellner's(1994) balanced loss function which is defined as follows:

where 0 < w < 1 and for i = 1,…,p and j = 1,…,n, Xij is distributed as normal with mean θi and variance 1. It is shown that the sample mean, X, is admissible when p <3. For p ≥3, we obtain that James-Stein type estimator which has uniformly smaller risk than that of sample mean X.  相似文献   

17.
James-Stein estimators are proposed for the #-parameter of an inverse Gaussian #G# distribution. The estimators of this class have smaller expected quadratic loss than the maximum likelihood estimator usually employed when analysing real sets of data. This problem is also studied for the case of an unknown nuisance parameter. Finally, improved estimators are considered for # in the two sample problem.  相似文献   

18.
The primary objective of a multi-regional clinical trial is to investigate the overall efficacy of the drug across regions and evaluate the possibility of applying the overall trial result to some specific region. A challenge arises when there is not enough regional sample size. We focus on the problem of evaluating applicability of a drug to a specific region of interest under the criterion of preserving a certain proportion of the overall treatment effect in the region. We propose a variant of James-Stein shrinkage estimator in the empirical Bayes context for the region-specific treatment effect. The estimator has the features of accommodating the between-region variation and finiteness correction of bias. We also propose a truncated version of the proposed shrinkage estimator to further protect risk in the presence of extreme value of regional treatment effect. Based on the proposed estimator, we provide the consistency assessment criterion and sample size calculation for the region of interest. Simulations are conducted to demonstrate the performance of the proposed estimators in comparison with some existing methods. A hypothetical example is presented to illustrate the application of the proposed method.  相似文献   

19.
This article considers fixed effects (FE) estimation for linear panel data models under possible model misspecification when both the number of individuals, n, and the number of time periods, T, are large. We first clarify the probability limit of the FE estimator and argue that this probability limit can be regarded as a pseudo-true parameter. We then establish the asymptotic distributional properties of the FE estimator around the pseudo-true parameter when n and T jointly go to infinity. Notably, we show that the FE estimator suffers from the incidental parameters bias of which the top order is O(T? 1), and even after the incidental parameters bias is completely removed, the rate of convergence of the FE estimator depends on the degree of model misspecification and is either (nT)? 1/2 or n? 1/2. Second, we establish asymptotically valid inference on the (pseudo-true) parameter. Specifically, we derive the asymptotic properties of the clustered covariance matrix (CCM) estimator and the cross-section bootstrap, and show that they are robust to model misspecification. This establishes a rigorous theoretical ground for the use of the CCM estimator and the cross-section bootstrap when model misspecification and the incidental parameters bias (in the coefficient estimate) are present. We conduct Monte Carlo simulations to evaluate the finite sample performance of the estimators and inference methods, together with a simple application to the unemployment dynamics in the U.S.  相似文献   

20.
In the general linear model consider the experimental design problem for the Gauß-Markov estimator or least squares estimator when the observations are correlated. We prove new formulas for the efficiency of an exact design with respect to the D-criterion. For models with intercept term, for example, these formulas are useful to derive better lower bounds for the efficiency than the bounds recently given for an arbitrary linear model. These bounds are applied in examples to symmetrical regular circulants as covariance matrices. A byproduct of the investigations is some insight as to what kinds of designs might retain their optimality or high efficiency (for the uncorrelated homoscedastic case) under correlated observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号