首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Non-Gaussian processes of Ornstein–Uhlenbeck (OU) type offer the possibility of capturing important distributional deviations from Gaussianity and for flexible modelling of dependence structures. This paper develops this potential, drawing on and extending powerful results from probability theory for applications in statistical analysis. Their power is illustrated by a sustained application of OU processes within the context of finance and econometrics. We construct continuous time stochastic volatility models for financial assets where the volatility processes are superpositions of positive OU processes, and we study these models in relation to financial data and theory.  相似文献   

2.
Parametric Estimation for Subordinators and Induced OU Processes   总被引:1,自引:0,他引:1  
Abstract.  Consider a stationary sequence of random variables with infinitely divisible marginal law, characterized by its Lévy density. We analyse the behaviour of a so-called cumulant M-estimator, in case this Lévy density is characterized by a Euclidean (finite dimensional) parameter. Under mild conditions, we prove consistency and asymptotic normality of the estimator. The estimator is considered in the situation where the data are increments of a subordinator as well as the situation where the data consist of a discretely sampled Ornstein–Uhlenbeck (OU) process induced by the subordinator. We illustrate our results for the Gamma-process and the Inverse-Gaussian OU process. For these processes we also explain how the estimator can be computed numerically.  相似文献   

3.
ABSTRACT.  This paper develops a new contrast process for parametric inference of general hidden Markov models, when the hidden chain has a non-compact state space. This contrast is based on the conditional likelihood approach, often used for ARCH-type models. We prove the strong consistency of the conditional likelihood estimators under appropriate conditions. The method is applied to the Kalman filter (for which this contrast and the exact likelihood lead to asymptotically equivalent estimators) and to the discretely observed stochastic volatility models.  相似文献   

4.
Simulated Likelihood Approximations for Stochastic Volatility Models   总被引:1,自引:0,他引:1  
Abstract. This paper deals with parametric inference for continuous-time stochastic volatility models observed at discrete points in time. We consider approximate maximum likelihood estimation: for the k th-order approximation, we pretend that the observations form a k th-order Markov chain, find the corresponding approximate log-likelihood function, and maximize it with respect to θ . The approximate log-likelihood function is not known analytically, but can easily be calculated by simulation. For each k , the method yields consistent and asymptotically normal estimators. Simulations from a model based on the Cox–Ingersoll–Ross model are used for illustration.  相似文献   

5.
In this paper we show that fully likelihood-based estimation and comparison of multivariate stochastic volatility (SV) models can be easily performed via a freely available Bayesian software called WinBUGS. Moreover, we introduce to the literature several new specifications that are natural extensions to certain existing models, one of which allows for time-varying correlation coefficients. Ideas are illustrated by fitting, to a bivariate time series data of weekly exchange rates, nine multivariate SV models, including the specifications with Granger causality in volatility, time-varying correlations, heavy-tailed error distributions, additive factor structure, and multiplicative factor structure. Empirical results suggest that the best specifications are those that allow for time-varying correlation coefficients.  相似文献   

6.
In this paper we show that fully likelihood-based estimation and comparison of multivariate stochastic volatility (SV) models can be easily performed via a freely available Bayesian software called WinBUGS. Moreover, we introduce to the literature several new specifications that are natural extensions to certain existing models, one of which allows for time-varying correlation coefficients. Ideas are illustrated by fitting, to a bivariate time series data of weekly exchange rates, nine multivariate SV models, including the specifications with Granger causality in volatility, time-varying correlations, heavy-tailed error distributions, additive factor structure, and multiplicative factor structure. Empirical results suggest that the best specifications are those that allow for time-varying correlation coefficients.  相似文献   

7.
Abstract. We consider a stochastic process driven by diffusions and jumps. Given a discrete record of observations, we devise a technique for identifying the times when jumps larger than a suitably defined threshold occurred. This allows us to determine a consistent non‐parametric estimator of the integrated volatility when the infinite activity jump component is Lévy. Jump size estimation and central limit results are proved in the case of finite activity jumps. Some simulations illustrate the applicability of the methodology in finite samples and its superiority on the multipower variations especially when it is not possible to use high frequency data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号