共查询到20条相似文献,搜索用时 0 毫秒
1.
Dong Wan Shin 《Statistics》2015,49(1):209-223
Stationary bootstrapping is applied to panel cointegration tests which are based on the ordinary least-squares estimator and the seemingly unrelated regression (SUR) estimator of the residual unit root. Large sample validity of stationary bootstrapping is established. A finite sample experiment reveals that size performances of the bootstrap tests are much less sensitive to cross-sectional correlation than those of existing tests and a test based on the SUR estimator has substantially better power than existing tests. 相似文献
2.
This paper proposes a generalized least squares and a generalized method of moment estimators for dynamic panel data models with both individual-specific and time-specific effects. We also demonstrate that the common estimators ignoring the presence of time-specific effects are inconsistent when N→∞ but T is finite if the time-specific effects are indeed present. Monte Carlo studies are also conducted to investigate the finite sample properties of various estimators. It is found that the generalized least squares estimator has the smallest bias and root mean square error, and also has nominal size close to the empirical size. It is also found that even when there is no presence of time-specific effects, there is hardly any efficiency loss of the generalized least squares estimator assuming its presence compared to the generalized least squares estimator allowing only the presence of individual-specific effects. 相似文献
3.
4.
This article introduces the appropriate within estimators for the most frequently used three-dimensional fixed effects panel data models. It analyzes the behavior of these estimators in the cases of no self-flow data, unbalanced data, and dynamic autoregressive models. The main results are then generalized for higher dimensional panel data sets as well. 相似文献
5.
This article proposes a new likelihood-based panel cointegration rank test which extends the test of Örsal and Droge (2014) (henceforth panel SL test) to dependent panels. The dependence is modelled by unobserved common factors which affect the variables in each cross-section through heterogeneous loadings. The data are defactored following the panel analysis of nonstationarity in idiosyncratic and common components (PANIC) approach of Bai and Ng (2004) and the cointegrating rank of the defactored data is then tested by the panel SL test. A Monte Carlo study demonstrates that the proposed testing procedure has reasonable size and power properties in finite samples. 相似文献
6.
Xiuli Wang 《Journal of applied statistics》2016,43(5):796-809
High-dimensional data arise frequently in modern applications such as biology, chemometrics, economics, neuroscience and other scientific fields. The common features of high-dimensional data are that many of predictors may not be significant, and there exists high correlation among predictors. Generalized linear models, as the generalization of linear models, also suffer from the collinearity problem. In this paper, combining the nonconvex penalty and ridge regression, we propose the weighted elastic-net to deal with the variable selection of generalized linear models on high dimension and give the theoretical properties of the proposed method with a diverging number of parameters. The finite sample behavior of the proposed method is illustrated with simulation studies and a real data example. 相似文献
7.
Spatial regression models are important tools for many scientific disciplines including economics, business, and social science. In this article, we investigate postmodel selection estimators that apply least squares estimation to the model selected by penalized estimation in high-dimensional regression models with spatial autoregressive errors. We show that by separating the model selection and estimation process, the postmodel selection estimator performs at least as well as the simultaneous variable selection and estimation method in terms of the rate of convergence. Moreover, under perfect model selection, the ℓ2 rate of convergence is the oracle rate of , compared with the convergence rate of in the general case. Here, n is the sample size and p, s are the model dimension and number of significant covariates, respectively. We further provide the convergence rate of the estimation error in the form of norm, and ideally the rate can reach as fast as . 相似文献
8.
Edward W. Frees 《Revue canadienne de statistique》2001,29(4):573-595
The omission of important variables is a well‐known model specification issue in regression analysis and mixed linear models. The author considers longitudinal data models that are special cases of the mixed linear models; in particular, they are linear models of repeated observations on a subject. Models of omitted variables have origins in both the econometrics and biostatistics literatures. The author describes regression coefficient estimators that are robust to and that provide the basis for detecting the influence of certain types of omitted variables. New robust estimators and omitted variable tests are introduced and illustrated with a case study that investigates the determinants of tax liability. 相似文献
9.
AbstractThe locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations. 相似文献
10.
Variable screening for censored survival data is most challenging when both survival and censoring times are correlated with an ultrahigh-dimensional vector of covariates. Existing approaches to handling censoring often make use of inverse probability weighting by assuming independent censoring with both survival time and covariates. This is a convenient but rather restrictive assumption which may be unmet in real applications, especially when the censoring mechanism is complex and the number of covariates is large. To accommodate heterogeneous (covariate-dependent) censoring that is often present in high-dimensional survival data, we propose a Gehan-type rank screening method to select features that are relevant to the survival time. The method is invariant to monotone transformations of the response and of the predictors, and works robustly for a general class of survival models. We establish the sure screening property of the proposed methodology. Simulation studies and a lymphoma data analysis demonstrate its favorable performance and practical utility. 相似文献
11.
In this paper, the variable selection strategies (criteria) are thoroughly discussed and their use in various survival models is investigated. The asymptotic efficiency property, in the sense of Shibata Ann Stat 8: 147-164, 1980, of a class of variable selection strategies which includes the AIC and all criteria equivalent to it, is established for a general class of survival models, such as parametric frailty or transformation models and accelerated failure time models, under minimum conditions. Furthermore, a multiple imputations method is proposed which is found to successfully handle censored observations and constitutes a competitor to existing methods in the literature. A number of real and simulated data are used for illustrative purposes. 相似文献
12.
13.
The paper analyses the biasing effect of anonymising micro data by multiplicative stochastic noise on the within estimation of a linear panel model. In short panels, additional bias results from serially correlated regressors. Results in this paper are related to the project “Firms’ Panel Data and Factual Anonymisation,” which is financed by Federal Ministry of Education and Research. We would like to thank the anonymous referees for helpful comments. 相似文献
14.
In this paper, we study the asymptotic properties of the adaptive Lasso estimators in high-dimensional generalized linear models. The consistency of the adaptive Lasso estimator is obtained. We show that, if a reasonable initial estimator is available, under appropriate conditions, the adaptive Lasso correctly selects covariates with non zero coefficients with probability converging to one, and that the estimators of non zero coefficients have the same asymptotic distribution they would have if the zero coefficients were known in advance. Thus, the adaptive Lasso has an Oracle property. The results are examined by some simulations and a real example. 相似文献
15.
Chunrong Ai 《Econometric Reviews》2017,36(1-3):6-22
This article extends the spatial panel data regression with fixed-effects to the case where the regression function is partially linear and some regressors may be endogenous or predetermined. Under the assumption that the spatial weighting matrix is strictly exogenous, we propose a sieve two stage least squares (S2SLS) regression. Under some sufficient conditions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and that the proposed estimator for the unknown function is consistent and also asymptotically normally distributed but at a rate slower than root-N. Consistent estimators for the asymptotic variances of the proposed estimators are provided. A small scale simulation study is conducted, and the simulation results show that the proposed procedure has good finite sample performance. 相似文献
16.
Tomohiro Ando 《Econometric Reviews》2018,37(3):183-211
This article considers panel data models in the presence of a large number of potential predictors and unobservable common factors. The model is estimated by the regularization method together with the principal components procedure. We propose a panel information criterion for selecting the regularization parameter and the number of common factors under a diverging number of predictors. Under the correct model specification, we show that the proposed criterion consistently identifies the true model. If the model is instead misspecified, the proposed criterion achieves asymptotically efficient model selection. Simulation results confirm these theoretical arguments. 相似文献
17.
Liu-Cang Wu Zhong-Zhan Zhang Deng-Ke Xu 《Journal of Statistical Computation and Simulation》2013,83(7):1266-1278
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies. 相似文献
18.
《Journal of Statistical Computation and Simulation》2012,82(2):195-203
The panel variant of the KPSS tests developed by Hadri [Hadri, K., 2000, Testing for stationarity in heterogeneous panels. Econometrics Journal, 3, 148–161] for the null of stationarity suffers from size distortions in the presence of cross-section dependence. However, applying the bootstrap methodology, we find that these tests are approximately correctly sized. 相似文献
19.
In survival and reliability studies, panel count data arise when we investigate a recurrent event process and each study subject is observed only at discrete time points. If recurrent events of several types are possible, we obtain panel count data with competing risks. Such data arise frequently from transversal studies on recurrent events in demography, epidemiology and reliability experiments where the individuals cannot be observed continuously. In the present paper, we propose an isotonic regression estimator for the cause specific mean function of the underlying recurrent event process of a competing risks panel count data. Further, a nonparametric test is proposed to compare the cause specific mean functions of the panel count competing risks data. Asymptotic properties of the proposed estimator and test statistic are studied. A simulation study is conducted to assess the finite sample behaviour of the proposed estimator and test statistic. Finally, the procedures developed are applied to a real data arising from skin cancer chemo prevention trial. 相似文献
20.
In survival studies, current status data are frequently encountered when some individuals in a study are not successively observed. This paper considers the problem of simultaneous variable selection and parameter estimation in the high-dimensional continuous generalized linear model with current status data. We apply the penalized likelihood procedure with the smoothly clipped absolute deviation penalty to select significant variables and estimate the corresponding regression coefficients. With a proper choice of tuning parameters, the resulting estimator is shown to be a root n/pn-consistent estimator under some mild conditions. In addition, we show that the resulting estimator has the same asymptotic distribution as the estimator obtained when the true model is known. The finite sample behavior of the proposed estimator is evaluated through simulation studies and a real example. 相似文献