首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2‐arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size.  相似文献   

2.
In this paper, we present several nonparametric multiple comparison (MC) procedures for unbalanced one-way factorial designs. The nonparametric hypotheses are formulated by using normalized distribution functions and the comparisons are carried out on the basis of the relative treatment effects. The proposed test statistics take the form of linear pseudo rank statistics and the asymptotic joint distribution of the pseudo rank statistics for testing treatments versus control satisfies the multivariate totally positive of order two condition irrespective of the correlations among the rank statistics. Therefore, in the context of MCs of treatments versus control, the nonparametric Simes test is validated for the global testing of the intersection hypothesis. For simultaneous testing of individual hypotheses, the nonparametric Hochberg stepup procedure strongly controls the familywise type I error rate asymptotically. With regard to all pairwise comparisons, we generalize various single-step and stagewise procedures to perform comparisons on the relative treatment effects. To further compare with normal theory counterparts, the asymptotic relative efficiencies of the nonparametric MC procedures with respect to the parametric MC procedures are derived under a sequence of Pitman alternatives in a nonparametric location shift model for unbalanced one-way layouts. Monte Carlo simulations are conducted to demonstrate the validity and power of the proposed nonparametric MC procedures.  相似文献   

3.
ABSTRACT

Just as Bayes extensions of the frequentist optimal allocation design have been developed for the two-group case, we provide a Bayes extension of optimal allocation in the three-group case. We use the optimal allocations derived by Jeon and Hu [Optimal adaptive designs for binary response trials with three treatments. Statist Biopharm Res. 2010;2(3):310–318] and estimate success probabilities for each treatment arm using a Bayes estimator. We also introduce a natural lead-in design that allows adaptation to begin as early in the trial as possible. Simulation studies show that the Bayesian adaptive designs simultaneously increase the power and expected number of successfully treated patients compared to the balanced design. And compared to the standard adaptive design, the natural lead-in design introduced in this study produces a higher expected number of successes whilst preserving power.  相似文献   

4.
Crossover designs have some advantages over standard clinical trial designs and they are often used in trials evaluating the efficacy of treatments for infertility. However, clinical trials of infertility treatments violate a fundamental condition of crossover designs, because women who become pregnant in the first treatment period are not treated in the second period. In previous research, to deal with this problem, some new designs, such as re‐randomization designs, and analysis methods including the logistic mixture model and the beta‐binomial mixture model were proposed. Although the performance of these designs and methods has previously been evaluated in large‐scale clinical trials with sample sizes of more than 1000 per group, the actual sample sizes of infertility treatment trials are usually around 100 per group. The most appropriate design and analysis for these moderate‐scale clinical trials are currently unclear. In this study, we conducted simulation studies to determine the appropriate design and analysis method of moderate‐scale clinical trials for irreversible endpoints by evaluating the statistical power and bias in the treatment effect estimates. The Mantel–Haenszel method had similar power and bias to the logistic mixture model. The crossover designs had the highest power and the smallest bias. We recommend using a combination of the crossover design and the Mantel–Haenszel method for two‐period, two‐treatment clinical trials with irreversible endpoints. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The computer construction of optimal or near‐optimal experimental designs is common in practice. Search procedures are often based on the non‐zero eigenvalues of the information matrix of the design. Minimising the average of the pairwise treatment variances can also be used as a search criterion. For equal treatment replication these approaches are equivalent to maximising the harmonic mean of the design's canonical efficiency factors, but differ when treatments are unequally replicated. This paper investigates the extent of these differences and discusses some apparent inconsistencies previously observed when comparing the optimality of equally and unequally replicated designs.  相似文献   

6.
Historical control trials compare an experimental treatment with a previously conducted control treatment. By assigning all recruited samples to the experimental arm, historical control trials can better identify promising treatments in early phase trials compared with randomized control trials. Existing designs of historical control trials with survival endpoints are based on asymptotic normal distribution. However, it remains unclear whether the asymptotic distribution of the test statistic is close enough to the true distribution given relatively small sample sizes in early phase trials. In this article, we address this question by introducing an exact design approach for exponentially distributed survival endpoints, and compare it with an asymptotic design in both real examples and simulation examples. Simulation results show that the asymptotic test could lead to bias in the sample size estimation. We conclude the proposed exact design should be used in the design of historical control trials.  相似文献   

7.
In this paper, we consider nonparametric multiple comparison procedures for unbalanced two-way factorial designs under a pure nonparametric framework. For multiple comparisons of treatments versus a control concerning the main effects or the simple factor effects, the limiting distribution of the associated rank statistics is proven to satisfy the multivariate totally positive of order two condition. Hence, asymptotically the proposed Hochberg procedure strongly controls the familywise type I error rate for the simultaneous testing of the individual hypotheses. In addition, we propose to employ Shaffer's modified version of Holm's stepdown procedure to perform simultaneous tests on all pairwise comparisons regarding the main or simple factor effects and to perform simultaneous tests on all interaction effects. The logical constraints in the corresponding hypothesis families are utilized to sharpen the rejective thresholds and improve the power of the tests.  相似文献   

8.
Flexible designs offer a large amount of flexibility in clinical trials with control of the type I error rate. This allows the combination of trials from different clinical phases of a drug development process. Such combinations require designs where hypotheses are selected and/or added at interim analysis without knowing the selection rule in advance so that both flexibility and multiplicity issues arise. The paper reviews the basic principles and some of the common methods for reaching flexibility while controlling the family-wise error rate in the strong sense. Flexible designs have been criticized because they may lead to different weights for the patients from the different stages when reassessing sample sizes. Analyzing the data in a conventional way avoids such unequal weighting but may inflate the multiple type I error rate. In cases where the conditional type I error rates of the new design (and conventional analysis) are below the conditional type I error rates of the initial design the conventional analysis may, however, be done without inflating the type I error rate. Focusing on a parallel group design with two treatments and a common control, we use this principle to investigate when we can select one treatment, reassess sample sizes and test the corresponding null hypotheses by the conventional level alpha z-test without compromising on the multiple type I error rate.  相似文献   

9.
In pharmaceutical‐related research, we usually use clinical trials methods to identify valuable treatments and compare their efficacy with that of a standard control therapy. Although clinical trials are essential for ensuring the efficacy and postmarketing safety of a drug, conducting clinical trials is usually costly and time‐consuming. Moreover, to allocate patients to the little therapeutic effect treatments is inappropriate due to the ethical and cost imperative. Hence, there are several 2‐stage designs in the literature where, for reducing cost and shortening duration of trials, they use the conditional power obtained from interim analysis results to appraise whether we should continue the lower efficacious treatments in the next stage. However, there is a lack of discussion about the influential impacts on the conditional power of a trial at the design stage in the literature. In this article, we calculate the optimal conditional power via the receiver operating characteristic curve method to assess the impacts on the quality of a 2‐stage design with multiple treatments and propose an optimal design using the minimum expected sample size for choosing the best or promising treatment(s) among several treatments under an optimal conditional power constraint. In this paper, we provide tables of the 2‐stage design subject to optimal conditional power for various combinations of design parameters and use an example to illustrate our methods.  相似文献   

10.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

11.
Simultaneously testing a family of n null hypotheses can arise in many applications. A common problem in multiple hypothesis testing is to control Type-I error. The probability of at least one false rejection referred to as the familywise error rate (FWER) is one of the earliest error rate measures. Many FWER-controlling procedures have been proposed. The ability to control the FWER and achieve higher power is often used to evaluate the performance of a controlling procedure. However, when testing multiple hypotheses, FWER and power are not sufficient for evaluating controlling procedure’s performance. Furthermore, the performance of a controlling procedure is also governed by experimental parameters such as the number of hypotheses, sample size, the number of true null hypotheses and data structure. This paper evaluates, under various experimental settings, the performance of some FWER-controlling procedures in terms of five indices, the FWER, the false discovery rate, the false non-discovery rate, the sensitivity and the specificity. The results can provide guidance on how to select an appropriate FWER-controlling procedure to meet a study’s objective.  相似文献   

12.
The purpose of this article is to compare efficiencies of several cluster randomized designs using the method of quantile dispersion graphs (QDGs). A cluster randomized design is considered whenever subjects are randomized at a group level but analyzed at the individual level. A prior knowledge of the correlation existing between subjects within the same cluster is necessary to design these cluster randomized trials. Using the QDG approach, we are able to compare several cluster randomized designs without requiring any information on the intracluster correlation. For a given design, several quantiles of the power function, which are directly related to the effect size, are obtained for several effect sizes. The quantiles depend on the intracluster correlation present in the model. The dispersion of these quantiles over the space of the unknown intracluster correlation is determined, and then depicted by the QDGs. Two applications of the proposed methodology are presented.  相似文献   

13.
A standard two-arm randomised controlled trial usually compares an intervention to a control treatment with equal numbers of patients randomised to each treatment arm and only data from within the current trial are used to assess the treatment effect. Historical data are used when designing new trials and have recently been considered for use in the analysis when the required number of patients under a standard trial design cannot be achieved. Incorporating historical control data could lead to more efficient trials, reducing the number of controls required in the current study when the historical and current control data agree. However, when the data are inconsistent, there is potential for biased treatment effect estimates, inflated type I error and reduced power. We introduce two novel approaches for binary data which discount historical data based on the agreement with the current trial controls, an equivalence approach and an approach based on tail area probabilities. An adaptive design is used where the allocation ratio is adapted at the interim analysis, randomising fewer patients to control when there is agreement. The historical data are down-weighted in the analysis using the power prior approach with a fixed power. We compare operating characteristics of the proposed design to historical data methods in the literature: the modified power prior; commensurate prior; and robust mixture prior. The equivalence probability weight approach is intuitive and the operating characteristics can be calculated exactly. Furthermore, the equivalence bounds can be chosen to control the maximum possible inflation in type I error.  相似文献   

14.
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.  相似文献   

15.
A common approach to analysing clinical trials with multiple outcomes is to control the probability for the trial as a whole of making at least one incorrect positive finding under any configuration of true and false null hypotheses. Popular approaches are to use Bonferroni corrections or structured approaches such as, for example, closed-test procedures. As is well known, such strategies, which control the family-wise error rate, typically reduce the type I error for some or all the tests of the various null hypotheses to below the nominal level. In consequence, there is generally a loss of power for individual tests. What is less well appreciated, perhaps, is that depending on approach and circumstances, the test-wise loss of power does not necessarily lead to a family wise loss of power. In fact, it may be possible to increase the overall power of a trial by carrying out tests on multiple outcomes without increasing the probability of making at least one type I error when all null hypotheses are true. We examine two types of problems to illustrate this. Unstructured testing problems arise typically (but not exclusively) when many outcomes are being measured. We consider the case of more than two hypotheses when a Bonferroni approach is being applied while for illustration we assume compound symmetry to hold for the correlation of all variables. Using the device of a latent variable it is easy to show that power is not reduced as the number of variables tested increases, provided that the common correlation coefficient is not too high (say less than 0.75). Afterwards, we will consider structured testing problems. Here, multiplicity problems arising from the comparison of more than two treatments, as opposed to more than one measurement, are typical. We conduct a numerical study and conclude again that power is not reduced as the number of tested variables increases.  相似文献   

16.
Summary.  Treatment of complex diseases such as cancer, leukaemia, acquired immune deficiency syndrome and depression usually follows complex treatment regimes consisting of time varying multiple courses of the same or different treatments. The goal is to achieve the largest overall benefit defined by a common end point such as survival. Adaptive treatment strategy refers to a sequence of treatments that are applied at different stages of therapy based on the individual's history of covariates and intermediate responses to the earlier treatments. However, in many cases treatment assignment depends only on intermediate response and prior treatments. Clinical trials are often designed to compare two or more adaptive treatment strategies. A common approach that is used in these trials is sequential randomization. Patients are randomized on entry into available first-stage treatments and then on the basis of the response to the initial treatments are randomized to second-stage treatments, and so on. The analysis often ignores this feature of randomization and frequently conducts separate analysis for each stage. Recent literature suggested several semiparametric and Bayesian methods for inference related to adaptive treatment strategies from sequentially randomized trials. We develop a parametric approach using mixture distributions to model the survival times under different adaptive treatment strategies. We show that the estimators proposed are asymptotically unbiased and can be easily implemented by using existing routines in statistical software packages.  相似文献   

17.
The problem of testing for equivalence in clinical trials is restated here in terms of the proper clinical hypotheses and a simple classical frequentist significance test based on the central t distribution is derived. This method is then shown to be more powerful than the methods based on usual (shortest) and symmetric confidence intervals.

We begin by considering a noncentral t statistic and then consider three approximations to it. A simulation is used to compare actual test sizes to the nominal values in crossover and completely randomized designs. A central t approximation was the best. The power calculation is then shown to be based on a central t distribution, and a method is developed for obtaining the sample size required to obtain a specified power. For the approximations, a simulation compares actual powers to those obtained for the t distribution and confirms that the theoretical results are close to the actual powers.  相似文献   

18.
Borrowing data from external control has been an appealing strategy for evidence synthesis when conducting randomized controlled trials (RCTs). Often named hybrid control trials, they leverage existing control data from clinical trials or potentially real-world data (RWD), enable trial designs to allocate more patients to the novel intervention arm, and improve the efficiency or lower the cost of the primary RCT. Several methods have been established and developed to borrow external control data, among which the propensity score methods and Bayesian dynamic borrowing framework play essential roles. Noticing the unique strengths of propensity score methods and Bayesian hierarchical models, we utilize both methods in a complementary manner to analyze hybrid control studies. In this article, we review methods including covariate adjustments, propensity score matching and weighting in combination with dynamic borrowing and compare the performance of these methods through comprehensive simulations. Different degrees of covariate imbalance and confounding are examined. Our findings suggested that the conventional covariate adjustment in combination with the Bayesian commensurate prior model provides the highest power with good type I error control under the investigated settings. It has desired performance especially under scenarios of different degrees of confounding. To estimate efficacy signals in the exploratory setting, the covariate adjustment method in combination with the Bayesian commensurate prior is recommended.  相似文献   

19.
Drug delivery devices are required to have excellent technical specifications to deliver drugs accurately, and in addition, the devices should provide a satisfactory experience to patients because this can have a direct effect on drug compliance. To compare patients' experience with two devices, cross-over studies with patient-reported outcomes (PRO) as response variables are often used. Because of the strength of cross-over designs, each subject can directly compare the two devices by using the PRO variables, and variables indicating preference (preferring A, preferring B, or no preference) can be easily derived. Traditionally, methods based on frequentist statistics can be used to analyze such preference data, but there are some limitations for the frequentist methods. Recently, Bayesian methods are considered an acceptable method by the US Food and Drug Administration to design and analyze device studies. In this paper, we propose a Bayesian statistical method to analyze the data from preference trials. We demonstrate that the new Bayesian estimator enjoys some optimal properties versus the frequentist estimator.  相似文献   

20.
For comparing treatments in clinical trials, Atkinson (1982) introduced optimal biased coins for balancing patients across treatment assignments by using D-optimality under the assumption of homoscedastic responses of different treatments. However, this assumption can be violated in many real applications. In this paper, we relax the homoscedasticity assumption in the k treatments setting with k>2. A general family of optimal response adaptive biased coin designs are proposed following Atkinson's procedure. Asymptotic properties of the proposed designs are obtained. Some advantages of the proposed design are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号