首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

3.
Abstract

In this article, a new composite quantile regression estimation (CQR) approach is proposed for partially linear varying coefficient models (PLVCM) under composite quantile loss function with B-spline approximations. The major advantage of the proposed procedures over the existing ones is easy to implement using existing software, and it requires no specification of the error distributions. Under the regularity conditions, the consistency and asymptotic normality of the estimators are also derived. Finally, a simulation study and a real data application are undertaken to assess the finite sample performance of the proposed estimation procedure.  相似文献   

4.
Autoregressive models with switching regime are a frequently used class of nonlinear time series models, which are popular in finance, engineering, and other fields. We consider linear switching autoregressions in which the intercept and variance possibly switch simultaneously, while the autoregressive parameters are structural and hence the same in all states, and we propose quasi‐likelihood‐based tests for a regime switch in this class of models. Our motivation is from financial time series, where one expects states with high volatility and low mean together with states with low volatility and higher mean. We investigate the performance of our tests in a simulation study, and give an application to a series of IBM monthly stock returns. The Canadian Journal of Statistics 40: 427–446; 2012 © 2012 Statistical Society of Canada  相似文献   

5.
This paper is motivated from a neurophysiological study of muscle fatigue, in which biomedical researchers are interested in understanding the time-dependent relationships of handgrip force and electromyography measures. A varying coefficient model is appealing here to investigate the dynamic pattern in the longitudinal data. The response variable in the study is continuous but bounded on the standard unit interval (0, 1) over time, while the longitudinal covariates are contaminated with measurement errors. We propose a generalization of varying coefficient models for the longitudinal proportional data with errors-in-covariates. We describe two estimation methods with penalized splines, which are formalized under a Bayesian inferential perspective. The first method is an adaptation of the popular regression calibration approach. The second method is based on a joint likelihood under the hierarchical Bayesian model. A simulation study is conducted to evaluate the efficacy of the proposed methods under different scenarios. The analysis of the neurophysiological data is presented to demonstrate the use of the methods.  相似文献   

6.
7.
We consider varying coefficient models, which are an extension of the classical linear regression models in the sense that the regression coefficients are replaced by functions in certain variables (for example, time), the covariates are also allowed to depend on other variables. Varying coefficient models are popular in longitudinal data and panel data studies, and have been applied in fields such as finance and health sciences. We consider longitudinal data and estimate the coefficient functions by the flexible B-spline technique. An important question in a varying coefficient model is whether an estimated coefficient function is statistically different from a constant (or zero). We develop testing procedures based on the estimated B-spline coefficients by making use of nice properties of a B-spline basis. Our method allows longitudinal data where repeated measurements for an individual can be correlated. We obtain the asymptotic null distribution of the test statistic. The power of the proposed testing procedures are illustrated on simulated data where we highlight the importance of including the correlation structure of the response variable and on real data.  相似文献   

8.
9.
10.
11.
In this article, we address the testing problem for additivity in nonparametric regression models. We develop a kernel‐based consistent test of a hypothesis of additivity in nonparametric regression, and establish its asymptotic distribution under a sequence of local alternatives. Compared to other existing kernel‐based tests, the proposed test is shown to effectively ameliorate the influence from estimation bias of the additive component of the nonparametric regression, and hence increase its efficiency. Most importantly, it avoids the tuning difficulties by using estimation‐based optimal criteria, while there is no direct tuning strategy for other existing kernel‐based testing methods. We discuss the usage of the new test and give numerical examples to demonstrate the practical performance of the test. The Canadian Journal of Statistics 39: 632–655; 2011. © 2011 Statistical Society of Canada  相似文献   

12.
13.
This article presents new nonparametric tests for heteroscedasticity in nonlinear and nonparametric regression models. The tests have an asymptotic standard normal distribution under the null hypothesis of homoscedasticity and are robust against any form of heteroscedasticity. A Monte Carlo simulation with critical values obtained from the wild bootstrap procedure is provided to asses the finite sample performances of the tests. A real application of testing interest rate volatility functions illustrates the usefulness of the tests proposed. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

14.
Testing homogeneity is a fundamental problem in finite mixture models. It has been investigated by many researchers and most of the existing works have focused on the univariate case. In this article, the authors extend the use of the EM‐test for testing homogeneity to multivariate mixture models. They show that the EM‐test statistic asymptotically has the same distribution as a certain transformation of a single multivariate normal vector. On the basis of this result, they suggest a resampling procedure to approximate the P‐value of the EM‐test. Simulation studies show that the EM‐test has accurate type I errors and adequate power, and is more powerful and computationally efficient than the bootstrap likelihood ratio test. Two real data sets are analysed to illustrate the application of our theoretical results. The Canadian Journal of Statistics 39: 218–238; 2011 © 2011 Statistical Society of Canada  相似文献   

15.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.  相似文献   

16.
A new test is proposed for the hypothesis of uniformity on bi‐dimensional supports. The procedure is an adaptation of the “distance to boundary test” (DB test) proposed in Berrendero, Cuevas, & Vázquez‐Grande (2006). This new version of the DB test, called DBU test, allows us (as a novel, interesting feature) to deal with the case where the support S of the underlying distribution is unknown. This means that S is not specified in the null hypothesis so that, in fact, we test the null hypothesis that the underlying distribution is uniform on some support S belonging to a given class ${\cal C}$ . We pay special attention to the case that ${\cal C}$ is either the class of compact convex supports or the (broader) class of compact λ‐convex supports (also called r‐convex or α‐convex in the literature). The basic idea is to apply the DB test in a sort of plug‐in version, where the support S is approximated by using methods of set estimation. The DBU method is analysed from both the theoretical and practical point of view, via some asymptotic results and a simulation study, respectively. The Canadian Journal of Statistics 40: 378–395; 2012 © 2012 Statistical Society of Canada  相似文献   

17.
18.
19.
Partial linear varying coefficient models are often used in real data analysis for a good balance between flexibility and parsimony. In this paper, we propose a robust adaptive model selection method based on the rank regression, which can do simultaneous coefficient estimation and three types of selections, i.e., varying and constant effects selection, relevant variable selection. The new method has superiority in robustness and efficiency by inheriting the advantage of the rank regression approach. Furthermore, consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies also confirm our method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号