首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overdispersion or extra variation is a common phenomenon that occurs when binomial (multinomial) data exhibit larger variances than that permitted by the binomial (multinomial) model. This arises when the data are clustered or when the assumption of independence is violated. Goodness-of-fit (GOF) tests available in the overdispersion literature have focused on testing for the presence of overdispersion in the data and hence they are not applicable for choosing between the several competing overdispersion models. In this paper, we consider a GOF test proposed by Neerchal and Morel [1998. Large cluster results for two parametric multinomial extra variation models. J. Amer. Statist. Assoc. 93(443), 1078–1087], and study its distributional properties and performance characteristics. This statistic is a direct analogue of the usual Pearson chi-squared statistic, but is also applicable when the clusters are not necessarily of the same size. As this test statistic is for testing model adequacy against the alternative that the model is not adequate, it is applicable in testing two competing overdispersion models.  相似文献   

2.
Modelling count data with overdispersion and spatial effects   总被引:1,自引:1,他引:0  
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson (GP) distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are discussed. On the other hand, extra spatial variability in the data is taken into account by adding correlated spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. in Stat Comput 12(4):353–367, (2002). In an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. in J R Stat Soc B64(4):583–640, (2002) and using proper scoring rules, see for example Gneiting and Raftery in Technical Report no. 463, University of Washington, (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the models allowing for overdispersion gives no or only little improvement, spatial Poisson models with spatially correlated or uncorrelated random effects are to be preferred over all other models according to the considered criteria.  相似文献   

3.
4.
An extension of the generalized linear mixed model was constructed to simultaneously accommodate overdispersion and hierarchies present in longitudinal or clustered data. This so‐called combined model includes conjugate random effects at observation level for overdispersion and normal random effects at subject level to handle correlation, respectively. A variety of data types can be handled in this way, using different members of the exponential family. Both maximum likelihood and Bayesian estimation for covariate effects and variance components were proposed. The focus of this paper is the development of an estimation procedure for the two sets of random effects. These are necessary when making predictions for future responses or their associated probabilities. Such (empirical) Bayes estimates will also be helpful in model diagnosis, both when checking the fit of the model as well as when investigating outlying observations. The proposed procedure is applied to three datasets of different outcome types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The generalized Poisson (GP) regression is an increasingly popular approach for modeling overdispersed as well as underdispersed count data. Several parameterizations have been performed for the GP regression, and the two well known models, the GP-1 and the GP-2, have been applied. The GP-P regression, which has been recently proposed, has the advantage of nesting the GP-1 and the GP-2 parametrically, besides allowing the statistical tests of the GP-1 and the GP-2 against a more general alternative. In several cases, count data often have excessive number of zero outcomes than are expected in the Poisson. This zero-inflation phenomenon is a specific cause of overdispersion, and the zero-inflated Poisson (ZIP) regression model has been proposed. However, if the data continue to suggest additional overdispersion, the zero-inflated negative binomial (ZINB-1 and ZINB-2) and the zero-inflated generalized Poisson (ZIGP-1 and ZIGP-2) regression models have been considered as alternatives. This article proposes a functional form of the ZIGP which mixes a distribution degenerate at zero with a GP-P distribution. The suggested model has the advantage of nesting the ZIP and the two well known ZIGP (ZIGP-1 and ZIGP-2) regression models, besides allowing the statistical tests of the ZIGP-1 and the ZIGP-2 against a more general alternative. The ZIP and the functional form of the ZIGP regression models are fitted, compared and tested on two sets of count data; the Malaysian insurance claim data and the German healthcare data.  相似文献   

6.
Non-Gaussian outcomes are often modeled using members of the so-called exponential family. The Poisson model for count data falls within this tradition. The family in general, and the Poisson model in particular, are at the same time convenient since mathematically elegant, but in need of extension since often somewhat restrictive. Two of the main rationales for existing extensions are (1) the occurrence of overdispersion, in the sense that the variability in the data is not adequately captured by the model's prescribed mean-variance link, and (2) the accommodation of data hierarchies owing to, for example, repeatedly measuring the outcome on the same subject, recording information from various members of the same family, etc. There is a variety of overdispersion models for count data, such as, for example, the negative-binomial model. Hierarchies are often accommodated through the inclusion of subject-specific, random effects. Though not always, one conventionally assumes such random effects to be normally distributed. While both of these issues may occur simultaneously, models accommodating them at once are less than common. This paper proposes a generalized linear model, accommodating overdispersion and clustering through two separate sets of random effects, of gamma and normal type, respectively. This is in line with the proposal by Booth et al. (Stat Model 3:179-181, 2003). The model extends both classical overdispersion models for count data (Breslow, Appl Stat 33:38-44, 1984), in particular the negative binomial model, as well as the generalized linear mixed model (Breslow and Clayton, J Am Stat Assoc 88:9-25, 1993). Apart from model formulation, we briefly discuss several estimation options, and then settle for maximum likelihood estimation with both fully analytic integration as well as hybrid between analytic and numerical integration. The latter is implemented in the SAS procedure NLMIXED. The methodology is applied to data from a study in epileptic seizures.  相似文献   

7.
A practical problem with large scale survey data is the potential for overdispersion. Overdispersion occurs when the data display more variability than is predicted by the variance–mean relationship for the assumed sampling model. This paper describes a simple strategy for detecting and adjusting for overdispersion in large scale survey data. The method is primarily motivated by data on the relationship between social class and educational attainment obtained from a 2% sample from the 1991 census of the population of Great Britain. Overdispersion can be detected by first grouping the data into a number of strata of approximately equal size. Under the assumption that the observations are independent and there is no variability in the parameter of interest, there is a direct relationship between the nominal standard errors and the empirical or sample standard deviation of the parameter estimates obtained from each of the separate strata. With the 2% sample from the British census data, quite a discernible departure from this relationship was found, indicating overdispersion. After allowing for overdispersion, improved and more realistic measures of precision of the strength of the social class–education associations were obtained.  相似文献   

8.
In several cases, count data often have excessive number of zero outcomes. This zero-inflated phenomenon is a specific cause of overdispersion, and zero-inflated Poisson regression model (ZIP) has been proposed for accommodating zero-inflated data. However, if the data continue to suggest additional overdispersion, zero-inflated negative binomial (ZINB) and zero-inflated generalized Poisson (ZIGP) regression models have been considered as alternatives. This study proposes the score test for testing ZIP regression model against ZIGP alternatives and proves that it is equal to the score test for testing ZIP regression model against ZINB alternatives. The advantage of using the score test over other alternative tests such as likelihood ratio and Wald is that the score test can be used to determine whether a more complex model is appropriate without fitting the more complex model. Applications of the proposed score test on several datasets are also illustrated.  相似文献   

9.
Clustered count data are commonly analysed by the generalized linear mixed model (GLMM). Here, the correlation due to clustering and some overdispersion is captured by the inclusion of cluster-specific normally distributed random effects. Often, the model does not capture the variability completely. Therefore, the GLMM can be extended by including a set of gamma random effects. Routinely, the GLMM is fitted by maximizing the marginal likelihood. However, this process is computationally intensive. Although feasible with medium to large data, it can be too time-consuming or computationally intractable with very large data. Therefore, a fast two-stage estimator for correlated, overdispersed count data is proposed. It is rooted in the split-sample methodology. Based on a simulation study, it shows good statistical properties. Furthermore, it is computationally much faster than the full maximum likelihood estimator. The approach is illustrated using a large dataset belonging to a network of Belgian general practices.  相似文献   

10.
We develop local influence diagnostics to detect influential subjects when generalized linear mixed models are fitted to incomplete longitudinal overdispersed count data. The focus is on the influence stemming from the dropout model specification. In particular, the effect of small perturbations around an MAR specification are examined. The method is applied to data from a longitudinal clinical trial in epileptic patients. The effect on models allowing for overdispersion is contrasted with that on models that do not.  相似文献   

11.
A new panel data model for count data is introduced. We suggest alternative estimators, such as pseudo maximum likelihood and generalized method of moments, of structural and nuisance parameters. In addition, different test statistics of independence and overdispersion are obtained. The small sample performance of the estimators and tests are evaluated in Monte Carlo experiments. The model is applied to the number of days absent in Sweden 1981–1991 for a panel of Swedish male workers.  相似文献   

12.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

13.
Score test of homogeneity for survival data   总被引:3,自引:0,他引:3  
If follow-up is made for subjects which are grouped into units, such as familial or spatial units then it may be interesting to test whether the groups are homogeneous (or independent for given explanatory variables). The effect of the groups is modelled as random and we consider a frailty proportional hazards model which allows to adjust for explanatory variables. We derive the score test of homogeneity from the marginal partial likelihood and it turns out to be the sum of a pairwise correlation term of martingale residuals and an overdispersion term. In the particular case where the sizes of the groups are equal to one, this statistic can be used for testing overdispersion. The asymptotic variance of this statistic is derived using counting process arguments. An extension to the case of several strata is given. The resulting test is computationally simple; its use is illustrated using both simulated and real data. In addition a decomposition of the score statistic is proposed as a sum of a pairwise correlation term and an overdispersion term. The pairwise correlation term can be used for constructing a statistic more robust to departure from the proportional hazard model, and the overdispesion term for constructing a test of fit of the proportional hazard model.  相似文献   

14.
The computation in the multinomial logit mixed effects model is costly especially when the response variable has a large number of categories, since it involves high-dimensional integration and maximization. Tsodikov and Chefo (2008) developed a stable MLE approach to problems with independent observations, based on generalized self-consistency and quasi-EM algorithm developed in Tsodikov (2003). In this paper, we apply the idea to clustered multinomial response to simplify the maximization step. The method transforms the complex multinomial likelihood to Poisson-type likelihood and hence allows for the estimates to be obtained iteratively solving a set of independent low-dimensional problems. The methodology is applied to real data and studied by simulations. While maximization is simplified, numerical integration remains the dominant challenge to computational efficiency.  相似文献   

15.
The aim of this paper is to propose methods of detecting change in the coefficients of a multinomial logistic regression model for categorical time series offline. The alternatives to the null hypothesis of stationarity can be either the hypothesis that it is not true, or that there is a temporary change in the sequence. We use the efficient score vector of the partial likelihood function. This has several advantages. First, the alternative value of the parameter does not have to be estimated; hence, we have a procedure that has a simple structure with only one parameter estimation using all available observations. This is in contrast with the generalized likelihood ratio-based change point tests. The efficient score vector is used in various ways. As a vector, its components correspond to the different components of the multinomial logistic regression model’s parameter vector. Using its quadratic form a test can be defined, where the presence of a change in any or all parameters is tested for. If there are too many parameters one can test for any subset while treating the rest as nuisance parameters. Our motivating example is a DNA sequence of four categories, and our test result shows that in the published data the distribution of the four categories is not stationary.  相似文献   

16.
We present a new algorithm for boosting generalized additive models for location, scale and shape (GAMLSS) that allows to incorporate stability selection, an increasingly popular way to obtain stable sets of covariates while controlling the per-family error rate. The model is fitted repeatedly to subsampled data, and variables with high selection frequencies are extracted. To apply stability selection to boosted GAMLSS, we develop a new “noncyclical” fitting algorithm that incorporates an additional selection step of the best-fitting distribution parameter in each iteration. This new algorithm has the additional advantage that optimizing the tuning parameters of boosting is reduced from a multi-dimensional to a one-dimensional problem with vastly decreased complexity. The performance of the novel algorithm is evaluated in an extensive simulation study. We apply this new algorithm to a study to estimate abundance of common eider in Massachusetts, USA, featuring excess zeros, overdispersion, nonlinearity and spatiotemporal structures. Eider abundance is estimated via boosted GAMLSS, allowing both mean and overdispersion to be regressed on covariates. Stability selection is used to obtain a sparse set of stable predictors.  相似文献   

17.
It is common to fit generalized linear models with binomial and Poisson responses, where the data show a variability that is greater than the theoretical variability assumed by the model. This phenomenon, known as overdispersion, may spoil inferences about the model by considering significant parameters associated with variables that have no significant effect on the dependent variable. This paper explains some methods to detect overdispersion and presents and evaluates three well-known methodologies that have shown their usefulness in correcting this problem, using random mean models, quasi-likelihood methods and a double exponential family. In addition, it proposes some new Bayesian model extensions that have proved their usefulness in correcting the overdispersion problem. Finally, using the information provided by the National Demographic and Health Survey 2005, the departmental factors that have an influence on the mortality of children under 5 years and female postnatal period screening are determined. Based on the results, extensions that generalize some of the aforementioned models are also proposed, and their use is motivated by the data set under study. The results conclude that the proposed overdispersion models provide a better statistical fit of the data.  相似文献   

18.
A generalized self-consistency approach to maximum likelihood estimation (MLE) and model building was developed in Tsodikov [2003. Semiparametric models: a generalized self-consistency approach. J. Roy. Statist. Soc. Ser. B Statist. Methodology 65(3), 759–774] and applied to a survival analysis problem. We extend the framework to obtain second-order results such as information matrix and properties of the variance. Multinomial model motivates the paper and is used throughout as an example. Computational challenges with the multinomial likelihood motivated Baker [1994. The Multinomial–Poisson transformation. The Statist. 43, 495–504] to develop the Multinomial–Poisson (MP) transformation for a large variety of regression models with multinomial likelihood kernel. Multinomial regression is transformed into a Poisson regression at the cost of augmenting model parameters and restricting the problem to discrete covariates. Imposing normalization restrictions by means of Lagrange multipliers [Lang, J., 1996. On the comparison of multinomial and Poisson log-linear models. J. Roy. Statist. Soc. Ser. B Statist. Methodology 58, 253–266] justifies the approach. Using the self-consistency framework we develop an alternative solution to multinomial model fitting that does not require augmenting parameters while allowing for a Poisson likelihood and arbitrary covariate structures. Normalization restrictions are imposed by averaging over artificial “missing data” (fake mixture). Lack of probabilistic interpretation at the “complete-data” level makes the use of the generalized self-consistency machinery essential.  相似文献   

19.
Most regression problems in practice require flexible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a unified approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with fixed effects, metrical covariates with non-linear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random field priors with different forms and degrees of smoothness. We applied the approach in several case-studies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications.  相似文献   

20.
The empirical Bayes (EB) method is commonly used by transportation safety analysts for conducting different types of safety analyses, such as before–after studies and hotspot analyses. To date, most implementations of the EB method have been applied using a negative binomial (NB) model, as it can easily accommodate the overdispersion commonly observed in crash data. Recent studies have shown that a generalized finite mixture of NB models with K mixture components (GFMNB-K) can also be used to model crash data subjected to overdispersion and generally offers better statistical performance than the traditional NB model. So far, nobody has developed how the EB method could be used with finite mixtures of NB models. The main objective of this study is therefore to use a GFMNB-K model in the calculation of EB estimates. Specifically, GFMNB-K models with varying weight parameters are developed to analyze crash data from Indiana and Texas. The main finding shows that the rankings produced by the NB and GFMNB-2 models for hotspot identification are often quite different, and this was especially noticeable with the Texas dataset. Finally, a simulation study designed to examine which model formulation can better identify the hotspot is recommended as our future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号