首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.

The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors.  相似文献   

2.
Ordinary least squares (OLS) is omnipresent in regression modeling. Occasionally, least absolute deviations (LAD) or other methods are used as an alternative when there are outliers. Although some data adaptive estimators have been proposed, they are typically difficult to implement. In this paper, we propose an easy to compute adaptive estimator which is simply a linear combination of OLS and LAD. We demonstrate large sample normality of our estimator and show that its performance is close to best for both light-tailed (e.g. normal and uniform) and heavy-tailed (e.g. double exponential and t 3) error distributions. We demonstrate this through three simulation studies and illustrate our method on state public expenditures and lutenizing hormone data sets. We conclude that our method is general and easy to use, which gives good efficiency across a wide range of error distributions.  相似文献   

3.
The small sample performance of least median of squares, reweighted least squares, least squares, least absolute deviations, and three partially adaptive estimators are compared using Monte Carlo simulations. Two data problems are addressed in the paper: (1) data generated from non-normal error distributions and (2) contaminated data. Breakdown plots are used to investigate the sensitivity of partially adaptive estimators to data contamination relative to RLS. One partially adaptive estimator performs especially well when the errors are skewed, while another partially adaptive estimator and RLS perform particularly well when the errors are extremely leptokur-totic. In comparison with RLS, partially adaptive estimators are only moderately effective in resisting data contamination; however, they outperform least squares and least absolute deviation estimators.  相似文献   

4.
The adaptive least absolute shrinkage and selection operator (Lasso) and least absolute deviation (LAD)-Lasso are two attractive shrinkage methods for simultaneous variable selection and regression parameter estimation. While the adaptive Lasso is efficient for small magnitude errors, LAD-Lasso is robust against heavy-tailed errors and severe outliers. In this article, we consider a data-driven convex combination of these two modern procedures to produce a robust adaptive Lasso, which not only enjoys the oracle properties, but synthesizes the advantages of the adaptive Lasso and LAD-Lasso. It fully adapts to different error structures including the infinite variance case and automatically chooses the optimal weight to achieve both robustness and high efficiency. Extensive simulation studies demonstrate a good finite sample performance of the robust adaptive Lasso. Two data sets are analyzed to illustrate the practical use of the procedure.  相似文献   

5.
One of the standard variable selection procedures in multiple linear regression is to use a penalisation technique in least‐squares (LS) analysis. In this setting, many different types of penalties have been introduced to achieve variable selection. It is well known that LS analysis is sensitive to outliers, and consequently outliers can present serious problems for the classical variable selection procedures. Since rank‐based procedures have desirable robustness properties compared to LS procedures, we propose a rank‐based adaptive lasso‐type penalised regression estimator and a corresponding variable selection procedure for linear regression models. The proposed estimator and variable selection procedure are robust against outliers in both response and predictor space. Furthermore, since rank regression can yield unstable estimators in the presence of multicollinearity, in order to provide inference that is robust against multicollinearity, we adjust the penalty term in the adaptive lasso function by incorporating the standard errors of the rank estimator. The theoretical properties of the proposed procedures are established and their performances are investigated by means of simulations. Finally, the estimator and variable selection procedure are applied to the Plasma Beta‐Carotene Level data set.  相似文献   

6.
Data censoring causes ordinary least-square estimators of linear models to be biased and inconsistent. The Tobit estimator yields consistent estimators in the presence of data censoring if the errors are normally distributed. However, nonnormality or heteroscedasticity results in the Tobit estimators being inconsistent. Various estimators have been proposed for circumventing the normality assumption. Some of these estimators include censored least absolute deviations (CLAD), symmetrically censored least-square (SCLS), and partially adaptive estimators. CLAD and SCLS will be consistent in the presence of heteroscedasticity; however, SCLS performs poorly in the presence of asymmetric errors. This article extends the partially adaptive estimation approach to accommodate possible heteroscedasticity as well as nonnormality. A simulation study is used to investigate the estimators’ relative performance in these settings. The partially adaptive censored regression estimators have little efficiency loss for censored normal errors and appear to outperform the Tobit and semiparametric estimators for nonnormal error distributions and be less sensitive to the presence of heteroscedasticity. An empirical example is considered, which supports these results.  相似文献   

7.
One linear and two nonlinear adaptive robust procedures have been developed in which preliminary statistics, based on tail lengths, attempt to identify distributions from which the samples arise so that a suitable robust estimator based on trimmed means can be used to estimate the location parameter. The efficiencies of the estimators based on the three proposed adaptive robust procedures have been obtained using Monte Carlo methods involving eight distributions and these efficiencies are compared with the efficiencies of nineteen other robust estimators.  相似文献   

8.
In this paper we propose a bootstrap-based method to estimate the standard error of adaptive estimators. We apply it in the standard problem of location estimation discussed in Randies and Hogg (1973) and in Hogg and Lenth (1984). Our adaptive estimator is based on a choice between the mean the 35% trimmed mean and the median. Finally, we carry out a simulation study to see how well the proposed method performs in small and moderate sample sizes.  相似文献   

9.
This report presents numerical results of an approach for parameter estimation and hypothesis testing that does not rely on specific assumptions about the underlying distribution of errors in the measured data. This approach combines robust estimation procedures, the bootstrap method for estimation of parameter uncertainties, permutation techniques for hypothesis testing, and adaptive approaches to estimation in order to obtain the minimum variance estimator or test statistic (within a predefined class) for the data under consideration. The technique produces efficient estimators of central tendency and powerful test statistics, even for small sample sizes. (Portions of this work have been presented in preliminary form (Turkheimer et al., 1996)).  相似文献   

10.
Maximum likelihood, goodness-of-fit, and symmetric percentile estimators of the power transformation parameterp, are considered. The comparative robustness of each estimation procedure is evaluated when the transformed data can be made symmetric, but may not necessarily be normal. Seven types of symmetric distributions are considered as well as four contaminated normal distributions over a range of six p values for samples of size 25, 50, and 100. The results indicate that the maximum likelihood estimator was slightly better than the goodness-of-fit estimator, but both were greatly superior to the percentile estimator. In general, the procedures were robust to distributional symmetric departures from normality, but increasing kurtosis caused appreciable increases in variation for estimated p values. The variability of p was found to decrease more than exponentially with decreases in the underlying normal distribution coefficient of variation. The standard likelihood ratio confidence interval procedure was found not to be generally useful.  相似文献   

11.
This paper proposes an adaptive estimator that is more precise than the ordinary least squares estimator if the distribution of random errors is skewed or has long tails. The adaptive estimates are computed using a weighted least squares approach with weights based on the lengths of the tails of the distribution of residuals. Smaller weights are assigned to those observations that have residuals in the tails of long-tailed distributions and larger weights are assigned to observations having residuals in the tails of short-tailed distributions. Monte Carlo methods are used to compare the performance of the proposed estimator and the performance of the ordinary least squares estimator. The estimates that were studied in this simulation include the difference between the means of two populations, the mean of a symmetric distribution, and the slope of a regression line. The adaptive estimators are shown to have lower mean squared errors than those for the ordinary least squares estimators for short-tailed, long-tailed, and skewed distributions, provided the sample size is at least 20. The ordinary least squares estimator has slightly lower mean squared error for normally distributed errors. The adaptive estimator is recommended for general use for studies having sample sizes of at least 20 observations unless the random errors are known to be normally distributed.  相似文献   

12.
It is common for linear regression models that the error variances are not the same for all observations and there are some high leverage data points. In such situations, the available literature advocates the use of heteroscedasticity consistent covariance matrix estimators (HCCME) for the testing of regression coefficients. Primarily, such estimators are based on the residuals derived from the ordinary least squares (OLS) estimator that itself can be seriously inefficient in the presence of heteroscedasticity. To get efficient estimation, many efficient estimators, namely the adaptive estimators are available but their performance has not been evaluated yet when the problem of heteroscedasticity is accompanied with the presence of high leverage data. In this article, the presence of high leverage data is taken into account to evaluate the performance of the adaptive estimator in terms of efficiency. Furthermore, our numerical work also evaluates the performance of the robust standard errors based on this efficient estimator in terms of interval estimation and null rejection rate (NRR).  相似文献   

13.
This paper focuses on robust estimation and variable selection for partially linear models. We combine the weighted least absolute deviation (WLAD) regression with the adaptive least absolute shrinkage and selection operator (LASSO) to achieve simultaneous robust estimation and variable selection for partially linear models. Compared with the LAD-LASSO method, the WLAD-LASSO method will resist to the heavy-tailed errors and outliers in the parametric components. In addition, we estimate the unknown smooth function by a robust local linear regression. Under some regular conditions, the theoretical properties of the proposed estimators are established. We further examine finite-sample performance of the proposed procedure by simulation studies and a real data example.  相似文献   

14.
The use of robust measures helps to increase the precision of the estimators, especially for the estimation of extremely skewed distributions. In this article, a generalized ratio estimator is proposed by using some robust measures with single auxiliary variable under the adaptive cluster sampling (ACS) design. We have incorporated tri-mean (TM), mid-range (MR) and Hodges-Lehman (HL) of the auxiliary variable as robust measures together with some conventional measures. The expressions of bias and mean square error (MSE) of the proposed generalized ratio estimator are derived. Two types of numerical study have been conducted using artificial clustered population and real data application to examine the performance of the proposed estimator over the usual mean per unit estimator under simple random sampling (SRS). Related results of the simulation study show that the proposed estimators provide better estimation results on both real and artificial population over the competing estimators.  相似文献   

15.
We propose a new robust regression estimator using data partition technique and M estimation (DPM). The data partition technique is designed to define a small fixed number of subsets of the partitioned data set and to produce corresponding ordinary least square (OLS) fits in each subset, contrary to the resampling technique of existing robust estimators such as the least trimmed squares estimator. The proposed estimator shares a common strategy with the median ball algorithm estimator that is obtained from the OLS trial fits only on a fixed number of subsets of the data. We examine performance of the DPM estimator in the eleven challenging data sets and simulation studies. We also compare the DPM with the five commonly used robust estimators using empirical convergence rates relative to the OLS for clean data, robustness through mean squared error and bias, masking and swamping probabilities, the ability of detecting the known outliers, and the regression and affine equivariances.  相似文献   

16.
A robust estimator is developed for Poisson mixture models with a known number of components. The proposed estimator minimizes the L2 distance between a sample of data and the model. When the component distributions are completely known, the estimators for the mixing proportions are in closed form. When the parameters for the component Poisson distributions are unknown, numerical methods are needed to calculate the estimators. Compared to the minimum Hellinger distance estimator, the minimum L2 estimator can be less robust to extreme outliers, and often more robust to moderate outliers.  相似文献   

17.
In this article, we consider a linear model in which the covariates are measured with errors. We propose a t-type corrected-loss estimation of the covariate effect, when the measurement error follows the Laplace distribution. The proposed estimator is asymptotically normal. In practical studies, some outliers that diminish the robustness of the estimation occur. Simulation studies show that the estimators are resistant to vertical outliers and an application of 6-minute walk test is presented to show that the proposed method performs well.  相似文献   

18.
Penalized least squares estimators are sensitive to the influence of outliers like the ordinary least squares estimator. We propose a sparse regression estimator for robust variable selection and estimation based on a robust initial estimator. It is proven that our estimator has at least the same breakdown value as the initial estimator. Numerical examples are presented to illustrate our method.  相似文献   

19.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2013,47(6):1193-1211
The outer product of gradients (OPG) estimation procedure based on least squares (LS) approach has been presented by Xia et al. [An adaptive estimation of dimension reduction space. J Roy Statist Soc Ser B. 2002;64:363–410] to estimate the single-index parameter in partially linear single-index models (PLSIM). However, its asymptotic property has not been established yet and the efficiency of LS-based method can be significantly affected by outliers and heavy-tailed distributions. In this paper, we firstly derive the asymptotic property of OPG estimator developed by Xia et al. [An adaptive estimation of dimension reduction space. J Roy Statist Soc Ser B. 2002;64:363–410] in theory, and a novel robust estimation procedure combining the ideas of OPG and local rank (LR) inference is further developed for PLSIM along with its theoretical property. Then, we theoretically derive the asymptotic relative efficiency (ARE) of the proposed LR-based procedure with respect to LS-based method, which is shown to possess an expression that is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Moreover, we demonstrate that the new proposed estimator has a great efficiency gain across a wide spectrum of non-normal error distributions and almost not lose any efficiency for the normal error. Even in the worst case scenarios, the ARE owns a lower bound equalling to 0.864 for estimating the single-index parameter and a lower bound being 0.8896 for estimating the nonparametric function respectively, versus the LS-based estimators. Finally, some Monte Carlo simulations and a real data analysis are conducted to illustrate the finite sample performance of the estimators.  相似文献   

20.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号