首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we suggest a class of estimators for estimating the population mean ? of the study variable Y using information on X?, the population mean of the auxiliary variable X using ranked set sampling envisaged by McIntyre [A method of unbiased selective sampling using ranked sets, Aust. J. Agric. Res. 3 (1952), pp. 385–390] and developed by Takahasi and Wakimoto [On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Statist. Math. 20 (1968), pp. 1–31]. The estimator reported by Kadilar et al. [Ratio estimator for the population mean using ranked set sampling, Statist. Papers 50 (2009), pp. 301–309] is identified as a member of the proposed class of estimators. The bias and the mean-squared error (MSE) of the proposed class of estimators are obtained. An asymptotically optimum estimator in the class is identified with its MSE formulae. To judge the merits of the suggested class of estimators over others, an empirical study is carried out.  相似文献   

2.
Calibration method adjusts the original design weights to improve the estimates by using auxiliary information. In this article we have proposed new calibration estimators under stratified ranked set sampling design and derive the estimator of variance of calibration estimator. A simulation study is carried out to see the performance of proposed estimators.  相似文献   

3.
In this paper, proportion estimators and associated variance estimators are proposed for a binary variable with a concomitant variable based on modified ranked set sampling methods, which are extreme ranked set sampling (ERSS), median ranked set sampling (MRSS), percentile ranked set sampling (Per-RSS) and L ranked set sampling (LRSS) methods. The Monte Carlo simulation study is performed to compare the performance of the estimators based on bias, mean squared error, and relative efficiency for different levels of correlation coefficient, set and cycle sizes under normal and log-normal distributions. Moreover, the study is supported with real data application.  相似文献   

4.
The parameters of Downton's bivariate exponential distribution are estimated based on a ranked set sample. Parametric and nonparametric methods are considered. The suggested estimators are compared to the corresponding ones based on simple random sampling. It turns out that some of the suggested estimators are significantly more efficient than the ones based on simple random sampling.  相似文献   

5.
In this study, we consider the application of the James–Stein estimator for population means from a class of arbitrary populations based on ranked set sample (RSS). We consider a basis for optimally combining sample information from several data sources. We succinctly develop the asymptotic theory of simultaneous estimation of several means for differing replications based on the well-defined shrinkage principle. We showcase that a shrinkage-type estimator will have, under quadratic loss, a substantial risk reduction relative to the classical estimator based on simple random sample and RSS. Asymptotic distributional quadratic biases and risks of the shrinkage estimators are derived and compared with those of the classical estimator. A simulation study is used to support the asymptotic result. An over-riding theme of this study is that the shrinkage estimation method provides a powerful extension of its traditional counterpart for non-normal populations. Finally, we will use a real data set to illustrate the computation of the proposed estimators.  相似文献   

6.
Ranked set sampling (RSS) is a sampling procedure that can be used to improve the cost efficiency of selecting sample units of an experiment or a study. In this paper, RSS is considered for estimating the location and scale parameters a and b>0, as well as the population mean from the family F((x?a)/b). Modified best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) are considered. Numerical computations with different location-scale distributions and different sample sizes are conducted to assess the efficiency of the suggested estimators. It is found that the modified BLIEs are uniformly higher than that of BLUEs for all distributions considered in this study. The modified BLUE and BLIE are more efficient when the underlying distribution is symmetric.  相似文献   

7.
The maximum likelihood estimator (MLE) and the likelihood ratio test (LRT) will be considered for making inference about the scale parameter of the exponential distribution in case of moving extreme ranked set sampling (MERSS). The MLE and LRT can not be written in closed form. Therefore, a modification of the MLE using the technique suggested by Maharota and Nanda (Biometrika 61:601–606, 1974) will be considered and this modified estimator will be used to modify the LRT to get a test in closed form for testing a simple hypothesis against one sided alternatives. The same idea will be used to modify the most powerful test (MPT) for testing a simple hypothesis versus a simple hypothesis to get a test in closed form for testing a simple hypothesis against one sided alternatives. Then it appears that the modified estimator is a good competitor of the MLE and the modified tests are good competitors of the LRT using MERSS and simple random sampling (SRS).  相似文献   

8.
Estimation of bivariate characteristics using ranked set sampling   总被引:5,自引:0,他引:5  
The superiority of ranked set sampling (RSS) over simple random sampling (SRS) for estimating the mean of a population is well known. This paper introduces and investigates a bivariate version of RSS for estimating the means of two characteristics simultaneously. It turns out that this technique is always superior to SRS and the usual univariate RSS of the same size. The performance of this procedure for a specific distribution can be evaluated using simulation or numerical computation. For the bivariate normal distribution, the efficiency of the procedure with respect to that of SRS is evaluated exactly for set size m = 2 and 3. The paper shows that the proposed estimator is more efficient than the regression RSS estimators proposed by Yu & Lam (1997) and Chen (2001). Real data that consist of heights and diameters of 399 trees are used to illustrate the procedure. The procedure can be generalized to the case of multiple characteristics.  相似文献   

9.
10.
The minimum variance unbiased estimators (MVUEs) of the parameters for various distributions are extensively studied under ranked set sampling (RSS). However, the results in existing literatures are only locally MVUEs, i.e. the MVUE in a class of some unbiased estimators is obtained. In this paper, the global MVUE of the parameter in a truncated parameter family is obtained, that is to say, it is the MVUE in the class of all unbiased estimators. Firstly we find the optimal RSS according to the character of a truncated parameter family, i.e. arrange RSS based on complete and sufficient statistics of independent and identically distributed samples. Then under this RSS, the global MVUE of the parameter in a truncated parameter family is found. Numerical simulations for some usual distributions in this family fully support the result from the above two-step optimizations. A real data set is used for illustration.  相似文献   

11.
In this paper, a new sampling method is suggested, namely truncation-based ranked set samples (TBRSS) for estimating the population mean and median. The suggested method is compared with the simple random sampling (SRS), ranked set sampling (RSS), extreme ranked set sampling (ERSS) and median-ranked set sampling (MRSS) methods. It is shown that for estimating the population mean when the underlying distribution is symmetric, TBRSS estimator is unbiased and it is more efficient than the SRS estimator based on the same number of measured units. For asymmetric distributions considered in this study, TBRSS estimator is more efficient than the SRS for all considered distributions except for exponential distribution when the selection coefficient gets large. When compared with ERSS and MRSS methods, TBRSS performs well with respect to ERSS for all considered distributions except for U(0, 1) distribution, while TBRSS efficiency is higher than that of MRSS for U(0, 1) distribution. For estimating the population median, the TBRSS estimators have higher efficiencies when compared with SRS and ERSS. A real data set is used to illustrate the suggested method.  相似文献   

12.
Logistic regression is the most popular technique available for modeling dichotomous-dependent variables. It has intensive application in the field of social, medical, behavioral and public health sciences. In this paper we propose a more efficient logistic regression analysis based on moving extreme ranked set sampling (MERSSmin) scheme with ranking based on an easy-to-available auxiliary variable known to be associated with the variable of interest (response variable). The paper demonstrates that this approach will provide more powerful testing procedure as well as more efficient odds ratio and parameter estimation than using simple random sample (SRS). Theoretical derivation and simulation studies will be provided. Real data from 2011 Youth Risk Behavior Surveillance System (YRBSS) data are used to illustrate the procedures developed in this paper.  相似文献   

13.
We investigate the relative performance of stratified bivariate ranked set sampling (SBVRSS), with respect to stratified simple random sampling (SSRS) for estimating the population mean with regression methods. The mean and variance of the proposed estimators are derived with the mean being shown to be unbiased. We perform a simulation study to compare the relative efficiency of SBVRSS to SSRS under various data-generating scenarios. We also compare the two sampling schemes on a real data set from trauma victims in a hospital setting. The results of our simulation study and the real data illustration indicate that using SBVRSS for regression estimation provides more efficiency than SSRS in most cases.  相似文献   

14.
A double L ranked set sampling (DLRSS) method is suggested for estimating the population mean. The DLRSS is compared with the simple random sampling (SRS), ranked set sampling (RSS) and L ranked set sampling (LRSS) methods based on the same number of measured units. The conditions for which the suggested estimator performs better than the other estimators are derived. It is found that, the suggested DLRSS estimator is an unbiased of the population mean, and is more efficient than its counterparts using SRS, RSS, and LRSS methods. Real data sets are used for illustration.  相似文献   

15.
The main focus of agricultural, ecological and environmental studies is to develop well designed, cost-effective and efficient sampling designs. Ranked set sampling (RSS) is one method that leads to accomplish such objectives by incorporating expert knowledge to its advantage. In this paper, we propose an efficient sampling scheme, named mixed RSS (MxRSS), for estimation of the population mean and median. The MxRSS scheme is a suitable mixture of both simple random sampling (SRS) and RSS schemes. The MxRSS scheme provides an unbiased estimator of the population mean, and its variance is always less than the variance of sample mean based on SRS. For both symmetric and asymmetric populations, the mean and median estimators based on SRS, partial RSS (PRSS) and MxRSS schemes are compared. It turns out that the mean and median estimates under MxRSS scheme are more precise than those based on SRS scheme. Moreover, when estimating the mean of symmetric and some asymmetric populations, the mean estimates under MxRSS scheme are found to be more efficient than the mean estimates with PRSS scheme. An application to real data is also provided to illustrate the implementation of the proposed sampling scheme.  相似文献   

16.
ABSTRACT

In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and ODRSS (BLUEs-ODRSS) are compared with the BLUEs based on ordered simple random sampling (OSRS), ranked set sampling (RSS), and ordered RSS (ORSS) schemes. These estimators are compared in terms of relative efficiency (RE), RE of determinant (RED), and RE of trace (RET). It is found that the BLUEs-ODRSS are uniformly better than the BLUEs based on OSRS, RSS, ORSS, and DRSS schemes. We also compare the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS), and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUEs, we calculate REs and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a non normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs.  相似文献   

17.
In this study, we considered a hypothesis test for the difference of two population means using ranked set sampling. We proposed a test statistic for this hypothesis test with more than one cycle under normality. We also investigate the performance of this test statistic, when the assumptions hold and are violated. For this reason, we investigate the type I error and power rates of tests under normality with equal and unequal variances, non-normality with equal and unequal variances. We also examine the performance of this test under imperfect ranking case. The simulation results show that derived test performs quite well.  相似文献   

18.
In surveys of natural resources in agriculture, ecology, fisheries, forestry, environmental management, etc., cost-effective sampling methods are of major concern. In this paper, we propose a two-stage cluster sampling (TSCS) in integration with the hybrid ranked set sampling (HRSS)—named TSCS-HRSS—in the second stage of sampling for estimating the population mean. The TSCS-HRSS scheme encompasses several existing ranked set sampling (RSS) schemes and may help in selecting a smaller number of units to rank. It is shown both theoretically and numerically that the TSCS-HRSS provides an unbiased estimator of the population mean and it is more precise than the mean estimators based on TSCS with SRS and RSS schemes. An unbiased estimator of the variance of the proposed mean estimator is also derived. A similar trend is observed when studying the impact of imperfect rankings on the performance of the TSCS-HRSS based mean estimator.  相似文献   

19.
Ranked set sampling (RSS) is an advanced sampling method which is very effective for estimating mean of the population when exact measurement of observation is difficult and/or expensive. Balanced Groups RSS (BGRSS) is one of the modification of RSS where only the lowest, the median and the largest ranked units are taken into account. Although BGRSS is advantageous and useful for some specific cases, it has strict restrictions regarding the set size which could be problematic for sampling plans. In this study, we make an improvement on BGRSS and propose a new design called Partial Groups RSS which offers a more flexible sampling plan providing the independence of the set size and sample size. Partial Groups RSS also has a cost advantage over BGRSS. We construct a Monte Carlo simulation study comparing the performance of the mean estimators of the proposed sampling design and BGRSS according to their sampling costs and mean squared errors for various type of distributions. In addition, we give a biometric data application for investigating the efficiency of Partial Groups RSS in real life applications.  相似文献   

20.
In this study, we consider different sampling designs of ranked set sampling (RSS) and give empirical distribution function (EDF) estimators for each sampling designs. We provide comparative graphs for the EDFs. Using these EDFs, power of five goodness-of-fit tests are obtained by Monte Carlo simulations for Tukey's gh distributions under RSS and simple random sampling (SRS). Performances of these tests are compared with the tests based on the SRS. Also, critical values belong to these tests are obtained for different set and cycle sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号