首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article deals with the study of some properties of a mixture periodically correlated n-variate vector autoregressive (MPVAR) time series model, which extends the mixture time invariant parameter n-vector autoregressive (MVAR) model that has been recently studied by Fong et al. (2007 Fong, P.W., Li, W.K., Yau, C.W., Wong, C.S. (2007). On a mixture vector autoregressive model. The Canadian Journal of Statistics 35:135150.[Crossref], [Web of Science ®] [Google Scholar]). Our main contributions here are, on the one side, the obtaining of the second moment periodically stationary condition for a n-variate MPVARS(n; K; 2, …, 2) model; furthermore, the closed-form of the second moment is obtained and, on the other side, the estimation, via the Expectation-Maximization (EM) algorithm, of the coefficient matrices and the error variance matrix.  相似文献   

2.
This article deals with the study of some properties of a mixture periodically correlated autoregressive (MPAR S ) time series model, which extends the mixture time invariant parameter autoregressive (MAR) model, that has recently received a considerable interest from many economic time series analysts, to mixture periodic parameter autoregressive model. The aim behind this extension is to make the model able to capture, in addition to all features captured by the classical MAR model, the periodicity feature exhibited by the autocovariance structure of many encountered financial and environmental time series with eventual multimodal distributions. Our main contribution here is obtaining of the second moment periodically stationary condition for a MPAR S (K; 2,…, 2) model, furthermore the closed-form of the second moment is obtained.  相似文献   

3.
In this paper, we reconsider the mixture vector autoregressive model, which was proposed in the literature for modelling non‐linear time series. We complete and extend the stationarity conditions, derive a matrix formula in closed form for the autocovariance function of the process and prove a result on stable vector autoregressive moving‐average representations of mixture vector autoregressive models. For these results, we apply techniques related to a Markovian representation of vector autoregressive moving‐average processes. Furthermore, we analyse maximum likelihood estimation of model parameters by using the expectation–maximization algorithm and propose a new iterative algorithm for getting the maximum likelihood estimates. Finally, we study the model selection problem and testing procedures. Several examples, simulation experiments and an empirical application based on monthly financial returns illustrate the proposed procedures.  相似文献   

4.
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.  相似文献   

5.
This article introduces a parsimonious structure for mixture of autoregressive models, where the weighting coefficients are determined through latent random variables, as functions of all past observations. These latent variables follow a Markov model. We propose a dynamic programming algorithm for forecasting, which reduces the volume of calculations. We also derive limiting behavior of unconditional first moment of the process and an appropriate upper bound for the limiting value of the variance. Further more, we show convergence and stability of the second moment. Finally, we illustrate the efficacy of the proposed model by simulation.  相似文献   

6.
Abstract.  We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean.  相似文献   

7.
This article uses algebraic arguments to cast light on the solution of vector autoregressive models in the presence of unit roots. First, the linear case and then the multi-lag specification are investigated. Clear-cut representations of the model solutions are obtained, closed-form expressions of the coefficient matrices are provided, and integration features and cointegration mechanisms for stationarity recovery are elucidated.  相似文献   

8.
First order stationary autoregressive (AR(1)) models are introduced for which there exists a linear relation between the expectations of the observations, and where it is readily possible to arrange the marginal distributions to be other than normal.  相似文献   

9.
ABSTRACT

In this paper, we prove some theoretic properties of bilinear time series models which are extension of ARMA models. The sufficient conditions for asymptotic stationarity and ivertibility of some types of bilinear models are derived. The structural theory of discussed bilinear models is similar to that of ARMA models. For illustration, a bilinear model has been fitted to the Wolfer sunspot numbers and a substantial reduction in sum of squared residuals is obtained as comparing with Box-Jenkins ARMA model.  相似文献   

10.
We propose an alternative estimation method for the semiparametric accelerated failure time mixture cure model by incorporating the profile likelihood into the M-step of the EM algorithm. The proposed method performs as well as the existing methods when the censoring is light and better than the existing methods when the censoring is moderate from the simulation studies. Regarding to the computational time, the proposed method runs faster than the existing methods.  相似文献   

11.
Abstract.  We propose a global smoothing method based on polynomial splines for the estimation of functional coefficient regression models for non-linear time series. Consistency and rate of convergence results are given to support the proposed estimation method. Methods for automatic selection of the threshold variable and significant variables (or lags) are discussed. The estimated model is used to produce multi-step-ahead forecasts, including interval forecasts and density forecasts. The methodology is illustrated by simulations and two real data examples.  相似文献   

12.
In this article, we consider the order estimation of autoregressive models with incomplete data using the expectation–maximization (EM) algorithm-based information criteria. The criteria take the form of a penalization of the conditional expectation of the log-likelihood. The evaluation of the penalization term generally involves numerical differentiation and matrix inversion. We introduce a simplification of the penalization term for autoregressive model selection and we propose a penalty factor based on a resampling procedure in the criteria formula. The simulation results show the improvements yielded by the proposed method when compared with the classical information criteria for model selection with incomplete data.  相似文献   

13.
A monitoring scheme is proposed to sequentially detect a structural change in random coefficient autoregressive time series of order p (RCA(p)) after a training period of size T. It extends structural change monitoring to RCA(p) time series. The asymptotic properties of our monitoring statistic are established under both the null of no change in parameters and the alternative of a change in coefficient. The finite sample properties are investigated by a simulation study.  相似文献   

14.
We propose a mixture integer-valued ARCH model for modeling integer-valued time series with overdispersion. The model consists of a mixture of K stationary or non-stationary integer-valued ARCH components. The advantages of the mixture model over the single-component model include the ability to handle multimodality and non-stationary components. The necessary and sufficient first- and second-order stationarity conditions, the necessary arbitrary-order stationarity conditions, and the autocorrelation function are derived. The estimation of parameters is done through an EM algorithm, and the model is selected by three information criterions, whose performances are studied via simulations. Finally, the model is applied to a real dataset.  相似文献   

15.
A periodically stationary time series has seasonal variances. A local linear trend estimation is proposed to accommodate unequal variances. A comparison of this proposed estimator with the estimator commonly used for a stationary time series is provided. The optimal bandwidth selection for this new trend estimator is discussed.  相似文献   

16.
The exponential distribution is one of the most used type of distribution because of its importance in many lifetime applications and its properties. So is its bivariate form. Simply used, there can be limitations specially for the heterogeneous type population. Its mixture form adds a lot of characters and desirable properties. We propose a mixture of bivariate exponential distribution, study properties of the associated parameters and predict the elements of the mixture. We include the presence of covariate information through a linear relationship, capturing the now famous idea by Marshall and Olkin.  相似文献   

17.
This article studies the problem of model identification and estimation for stable autoregressive process observed in a symmetric stable noise environment. A new tool called partial auto-covariation function is introduced to identify the stable autoregressive signals. The signal and noise parameters are estimated using a modified version of Generalized Yule Walker type method and the method of moments. The proposed methods are illustrated through data simulated from autoregressive signals with symmetric stable innovations. The new technique is applied to analyze the time series of sea surface temperature anomaly and compared with its Gaussian counterpart.  相似文献   

18.
The paper considers the clustering of two large sets of Internet traffic data consisting of information measured from headers of transmission control protocol packets collected on a busy arc of a university network connecting with the Internet. Packets are grouped into 'flows' thought to correspond to particular movements of information between one computer and another. The clustering is based on representing the flows as each sampled from one of a finite number of multinomial distributions and seeks to identify clusters of flows containing similar packet‐length distributions. The clustering uses the EM algorithm, and the data‐analytic and computational details are given.  相似文献   

19.
This article applies the EM-based (ECM and ECME) algorithms to find the maximum likelihood estimates of model parameters in general AR models with independent scaled t-distributed innovations whenever the degrees of freedom are unknown. The ECME, sharing advantages with both EM and Newton–Raphson algorithms, is an extension of ECM, which itself is an extension of the EM algorithm. The ECM and ECME algorithms, which are analytically quite simple to use, are then compared based on the computational running time and the accuracy of estimation via a simulation study. The results demonstrate that the ECME is efficient and usable in practice. We also show how our method can be applied to the Wolfer's sunspot data.  相似文献   

20.
In this paper, we consider the problem of testing for a parameter change in Poisson autoregressive models. We suggest two types of cumulative sum (CUSUM) tests, namely, those based on estimates and residuals. We first demonstrate that the conditional maximum likelihood estimator (CMLE) is strongly consistent and asymptotically normal and then construct the CMLE‐based CUSUM test. It is shown that under regularity conditions, its limiting null distribution is a function of independent Brownian bridges. Next, we construct the residual‐based CUSUM test and derive its limiting null distribution. Simulation results are provided for illustration. A real‐data analysis is performed on data for polio incidence and campylobacteriosis infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号