首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The generalized Pareto distribution (GPD) is commonly used as extreme values's distribution. We present goodness of fit tests for the GPD based on Neyman's smooth tests statistics. The methods of maximum likelihood, moments and probability-weighted moments are used for estimating the GPD's parameters. Simulations are done to study the power of these tests.  相似文献   

2.
ABSTRACT

The properties of a family of distributions generalizing the secant hyperbolic are developed. This family consists of symmetric distributions, with kurtosis ranging from 1.8 to infinity, and includes the logistic as a special case, the uniform as a limiting case, and closely approximates the normal and Student's t-distributions with corresponding kurtosis. A significant difference between this family and Student's t is that for any member of the generalized secant hyperbolic family, all moments are finite. Further, technical difficulties associated with evaluating moments of Student's t (especially for fractional degrees of freedom) are not present with this family. The properties of the maximum likelihood and modified maximum likelihood estimates of the location and scale parameters for complete samples are considered. Examples illustrate the methods developed in this work.  相似文献   

3.
Truncated Cauchy distribution with four unknown parameters is considered and derivation and existence of the maximum likelihood estimates is investigated here. We provide a sufficient condition for the maximum likelihood estimate of the scale parameter to be finite, and also show that the condition is necessary for sufficiently large samples. Note that all the moments of the truncated Cauchy distribution exist which makes it much more attractive as a model when compared to the regular Cauchy. We also study, using simulations, the small sample properties of the maximum likelihood estimates.  相似文献   

4.
5.
Necessary and sufficient conditions for the existence of maximum likelihood estimators of unknown parameters in linear models with equi‐correlated random errors are presented. The basic technique we use is that these models are, first, orthogonally transformed into linear models with two variances, and then the maximum likelihood estimation problem is solved in the environment of transformed models. Our results generalize a result of Arnold, S. F. (1981) [The theory of linear models and multivariate analysis. Wiley, New York]. In addition, we give necessary and sufficient conditions for the existence of restricted maximum likelihood estimators of the parameters. The results of Birkes, D. & Wulff, S. (2003) [Existence of maximum likelihood estimates in normal variance‐components models. J Statist Plann. Inference. 113 , 35–47] are compared with our results and differences are pointed out.  相似文献   

6.
Semiparametric maximum likelihood estimation with estimating equations (SMLE) is more flexible than traditional methods; it has fewer restrictions on distributions and regression models. The required information about distribution and regression structures is incorporated in estimating equations of the SMLE to improve the estimation quality of non‐parametric methods. The likelihood of SMLE for censored data involves complicated implicit functions without closed‐form expressions, and the first derivatives of the log‐profile‐likelihood cannot be expressed as summations of independent and identically distributed random variables; it is challenging to derive asymptotic properties of the SMLE for censored data. For group‐censored data, the paper shows that all the implicit functions are well defined and obtains the asymptotic distributions of the SMLE for model parameters and lifetime distributions. With several examples the paper compares the SMLE, the regular non‐parametric likelihood estimation method and the parametric MLEs in terms of their asymptotic efficiencies, and illustrates application of SMLE. Various asymptotic distributions of the likelihood ratio statistics are derived for testing the adequacy of estimating equations and a partial set of parameters equal to some known values.  相似文献   

7.
Restricted maximum likelihood (REML) is a procedure for estimating a variance function in a heteroscedastic linear model. Although REML has been extended to non-linear models, the case in which the data are dominated by replicated observations with unknown values of the independent variable of interest, such as the concentration of a substance in a blood sample, has not been considered. We derive a REML procedure for an immunoassay and show that the resulting estimator is superior to those currently being used. Some interesting properties of the REML estimator are derived, and its relationship to other estimators is discussed.  相似文献   

8.
This paper explores the asymptotic distribution of the restricted maximum likelihood estimator of the variance components in a general mixed model. Restricting attention to hierarchical models, central limit theorems are obtained using elementary arguments with only mild conditions on the covariates in the fixed part of the model and without having to assume that the data are either normally or spherically symmetrically distributed. Further, the REML and maximum likelihood estimators are shown to be asymptotically equivalent in this general framework, and the asymptotic distribution of the weighted least squares estimator (based on the REML estimator) of the fixed effect parameters is derived.  相似文献   

9.
This paper concerns the estimation of the offspring mean vector, the covariance matrix and the growth rate in the class of bisexual branching processes with population‐size dependent mating. For the proposed estimators, some unconditional moments and some conditioned to non‐extinction are determined and asymptotic properties are established. Confidence intervals are obtained and, as illustration, a simulation example is given.  相似文献   

10.
The parameter estimation problem for a Markov jump process sampled at equidistant time points is considered here. Unlike the diffusion case where a closed form of the likelihood function is usually unavailable, here an explicit expansion of the likelihood function of the sampled chain is provided. Under suitable ergodicity conditions on the jump process, the consistency and the asymptotic normality of the likelihood estimator are established as the observation period tends to infinity. Simulation experiments are conducted to demonstrate the computational facility of the method.  相似文献   

11.
Large sample properties of an empirical Bayes estimate for a first order autoregressive process are obtained with respect to both the empirical Bayes and the frequentist frameworks.  相似文献   

12.
We develop the empirical likelihood approach for a class of vector‐valued, not necessarily Gaussian, stationary processes with unknown parameters. In time series analysis, it is known that the Whittle likelihood is one of the most fundamental tools with which to obtain a good estimator of unknown parameters, and that the score functions are asymptotically normal. Motivated by the Whittle likelihood, we apply the empirical likelihood approach to its derivative with respect to unknown parameters. We also consider the empirical likelihood approach to minimum contrast estimation based on a spectral disparity measure, and apply the approach to the derivative of the spectral disparity. This paper provides rigorous proofs on the convergence of our two empirical likelihood ratio statistics to sums of gamma distributions. Because the fitted spectral model may be different from the true spectral structure, the results enable us to construct confidence regions for various important time series parameters without assuming specified spectral structures and the Gaussianity of the process.  相似文献   

13.
Pseudo maximum likelihood estimation (PML) for the Dirich-let-multinomial distribution is proposed and examined in this pa-per. The procedure is compared to that based on moments (MM) for its asymptotic relative efficiency (ARE) relative to the maximum likelihood estimate (ML). It is found that PML, requiring much less computational effort than ML and possessing considerably higher ARE than MM, constitutes a good compromise between ML and MM. PML is also found to have very high ARE when an estimate for the scale parameter in the Dirichlet-multinomial distribution is all that is needed.  相似文献   

14.
A NOTE ON VARIANCE ESTIMATION FOR THE GENERALIZED REGRESSION PREDICTOR   总被引:1,自引:0,他引:1  
The generalized regression (GREG) predictor is used for estimating a finite population total when the study variable is well‐related to the auxiliary variable. In 1997, Chaudhuri & Roy provided an optimal estimator for the variance of the GREG predictor within a class of non‐homogeneous quadratic estimators (H) under a certain superpopulation model M. They also found an inequality concerning the expected variances of the estimators of the variance of the GREG predictor belonging to the class H under the model M. This paper shows that the derivation of the optimal estimator and relevant inequality, presented by Chaudhuri & Roy, are incorrect.  相似文献   

15.
A new approach, is proposed for maximum likelihood (ML) estimation in continuous univariate distributions. The procedure is used primarily to complement the ML method which can fail in situations such as the gamma and Weibull distributions when the shape parameter is, at most, unity. The new approach provides consistent and efficient estimates for all possible values of the shape parameter. Its performance is examined via simulations. Two other, improved, general methods of ML are reported for comparative purposes. The methods are used to estimate the gamma and Weibull distributions using air pollution data from Melbourne. The new ML method is accurate when the shape parameter is less than unity and is also superior to the maximum product of spacings estimation method for the Weibull distribution.  相似文献   

16.
The Gini index and its generalizations have been used extensively for measuring inequality and poverty in the social sciences. Recently, interval estimation based on nonparametric statistics has been proposed in the literature, for example the naive bootstrap method, the iterated bootstrap method and the bootstrap method via a pivotal statistic. In this paper, we propose empirical likelihood methods to construct confidence intervals for the Gini index or the difference of two Gini indices. Simulation studies show that the proposed empirical likelihood method performs slightly worse than the bootstrap method based on a pivotal statistic in terms of coverage accuracy, but it requires less computation. However, the bootstrap calibration of the empirical likelihood method performs better than the bootstrap method based on a pivotal statistic.  相似文献   

17.
Estimation of high quantiles of a distribution in the domain of attraction of the Fréchet distribution is based on the extremal distribution of the k largest order statistics. The problem is treated by a local maximum likelihood method on a three parameter model. The estimators are shown to be asymptotically consistent for the whole range of the tail index parameter.  相似文献   

18.
This paper considers an iterative method for obtaining maximum likelihood estimates for a contingency table derived from a clustered sampling model. Comparisons are made with other methods proposed in the literature.  相似文献   

19.
Two procedures are considered for estimating the concentration parameters of the Fisher matrix distribution for rotations or orientations in three dimensions. The first is maximum likelihood. The use of a convenient 1-dimensional integral representation of the normalising constant, which greatly simplifies the computation, is suggested. The second approach exploits the equivalence of the Fisher distribution for rotations in three dimensions, and the Bingham distribution for axes in four dimensions. We describe a pseudo likelihood procedure which works for the Bingham distribution in any dimension. This alternative approach does not require numerical integration. Results on the asymptotic efficiency of the pseudo likelihood estimator relative to the maximum likelihood estimator are given, and the two estimators are compared in the analysis of a well-known vectorcardiography dataset.  相似文献   

20.
For normal linear models, it is generally accepted that residual maximum likelihood estimation is appropriate when covariance components require estimation. This paper considers generalized linear models in which both the mean and the dispersion are allowed to depend on unknown parameters and on covariates. For these models there is no closed form equivalent to residual maximum likelihood except in very special cases. Using a modified profile likelihood for the dispersion parameters, an adjusted score vector and adjusted information matrix are found under an asymptotic development that holds as the leverages in the mean model become small. Subsequently, the expectation of the fitted deviances is obtained directly to show that the adjusted score vector is unbiased at least to O(1/n) . Exact results are obtained in the single‐sample case. The results reduce to residual maximum likelihood estimation in the normal linear case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号