首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Addis Ababa is a highland city with varied topography and landscape features. The mountains that surround the city are covered with urban forest of different types. These forests are providing various ecosystem services for the urban and peri-urban population of the city. Apart from surface temperature regulating function of the green spaces of Addis Ababa, no quantitative assessment of the carbon sequestration and soil protection ecosystem services provided by the urban forest has been conducted to date. The aim of this study was to assess selected ecosystem services such as carbon storage potential, habitat support and soil erosion protection provided by different categories of urban forest of Addis Ababa. The result showed that carbon density in the study area varied with forest categories viz. 293tons/ha, 142tons/ha and 132tons/ha in the dense, medium and open forest types respectively. The Shannon-Wiener diversity index is3.24 for Junipers dominated forest, 2.98 for mixed forest and 2.76 for Eucalyptus dominated forest. The formation of soil erosion features is significantly different among the Eucalyptus forest, Juniperus forest and Mixed forest where high incidence of soil erosion was recorded in the Eucalyptus forest. Therefore, irrespective of the environmental factors such as slope, aspect and elevation differences, there is an association between Eucalyptus forest cover and high soil erosion features. To ensure sustainable supply of ecosystem services and maintain a balanced urban environment, all green spaces in the city should be ecologically networked and diversified. Therefore, assessment of ecosystem services provided essential information for effective planning of the green space in terms of species composition and interconnectivity.  相似文献   

2.
Vegetation has gained importance in respective debates about climate change mitigation and adaptation in cities. Although recently developed remote sensing techniques provide necessary city-wide information, a sufficient and consistent city-wide information of relevant urban ecosystem services, such as carbon emissions offset, does not exist. This study uses city-wide, high-resolution, and remotely sensed data to derive individual tree species information and to estimate the above-ground carbon storage of urban forests in Berlin, Germany. The variance of tree biomass was estimated using allometric equations that contained different levels of detail regarding the tree species found in this study of 700 km2, which had a tree canopy of 213 km2. The average tree density was 65 trees/ha per unit of tree cover and a range from 10 to 40 trees/ha for densely urban land cover. City-wide estimates of the above-ground carbon storage ranged between 6.34 and 7.69 tC/ha per unit of land cover, depending on the level of tree species information used. Equations that did not use individually localized tree species information undervalued the total amount of urban forest carbon storage by up to 15 %. Equations using a generalized estimate of dominant tree species information provided rather precise city-wide carbon estimates. Concerning differences within a densely built area per unit of land cover approaches using individually localized tree species information prevented underestimation of mid-range carbon density areas (10–20 tC/ha), which were actually up to 8.4 % higher, and prevented overestimation of very low carbon density areas (0–5 tC/ha), which were actually up to 11.4 % lower. Park-like areas showed 10 to 30 tC/ha, whereas land cover of very high carbon density (40–80 tC/ha) mostly consisted of mixed peri-urban forest stands. Thus, this approach, which uses widely accessible and remotely sensed data, can help to improve the consistency of forest carbon estimates in cities.  相似文献   

3.
Trees provide important ecological services in cities, yet the vulnerability of the urban forest to massive tree losses from pest outbreaks could threaten those services, with unknown environmental consequences. The outbreak of emerald ash borer is an imminent threat to the ash population in North America. In the Minneapolis?CSaint Paul, Minnesota, metropolitan area, ash trees are present in 50?% of residential landscapes in Ramsey and Anoka Counties. We used a large survey of household activities, a tree inventory, a Household Flux Calculator accounting tool, and a set of annual evapotranspiration measurements, to quantify the current carbon, nitrogen, and phosphorus storage in ash trees, the cycling of these elements, and the total evapotranspiration from ash trees in residential areas in the metropolitan region. Ash represented 6?% of the trees in residential areas and the removal of the entire ash population would correspondingly reduce net primary production and carbon sequestration by only a few percent and would have negligible effects on losses of nitrogen and phosphorus from residential landscapes. Similarly, the effects of ash loss on the hydrologic cycle would be minimal and would depend largely on management choices for the ground currently underneath ash tree canopies. Overall, the percentage change in biogeochemical and hydrological fluxes corresponded closely with the percent of the total urban tree population that was represented by ash, suggesting that areas with higher densities of ash would experience correspondingly larger effects. A hypothetical tree replacement scenario with similar broadleaf species was determined to be likely to re-establish the original biogeochemical and hydrological conditions once the replacement trees reach maturity.  相似文献   

4.
Urban forests provide important ecosystem services. In terms of hydrological benefits, forest ecosystems in urban environments represent qualitative and quantitative filter for rainwater. We quantified the canopy interception in relation to urban forest stand structure and rainfall intensity in an urban transect of the mixed (upland) forest in the city centre, towards a riparian pine forest and a floodplain hardwood forest in the City of Ljubljana, Slovenia. Bulk precipitation in open areas and throughfall were measured with fixed rainfall collectors in each forest. Stemflow was estimated from a review of relevant literature. We found that canopy interception in selected urban forests was mainly affected by tree species composition and other stand structure variables, such as canopy cover and tree dimensions. Average annual canopy interception was highest in the mixed forest (18.0% of bulk precipitation), while the riparian pine forest had the lowest level (3.9% of bulk precipitation) and the floodplain hardwood forest had the intermediate level for interception (7.1% of bulk precipitation). The mixed forest exhibited the stand structure factors that contributed to the highest canopy interception among the studied forests: high assemblage of dominant coniferous trees, denser canopy cover and the highest growing stock. Furthermore, rainfall intensity has proven to be an important factor for the seasonal partitioning (comparing the leafed and leafless period) of canopy interception. A better understanding of precipitation interception processes in urban forests is needed to assist urban forest managing and planning, aiming at maximizing canopy interception for the mitigation of stormwater runoff and flooding in urbanized watershed.  相似文献   

5.
Forest habitat is important for a variety of woodpecker species, and is under pressure from urbanization. Red-headed Woodpeckers (Melanerpes erythrocephalus; RHWO) were once abundant across Eastern North America, and their populations have been declining since the 1960s. Their distribution encompasses urban centers, and since urban habitats differ from natural forest areas, our goal was to understand RHWO nest-site selection in an urban context. We addressed two main questions 1) what are the characteristics of RHWO nest selection across multiple spatial scales and 2) how do RHWO nest tree characteristics in city parks compare to those in forest preserves? This work was done in Cook County, IL, which includes Chicago, the third-largest city in the USA by population. We examined 34 RHWO nest trees used between 2010 and 2013, their surrounding habitat, and the landscape within a 1 km radius. Used trees and habitats were compared to paired unused trees and habitats, and landscape-scale characteristics were compared to random locations. Advanced decay of the nest tree, low canopy cover and increased presence of fungus on trees in the surrounding habitat were the best predictors of RHWO nesting in the area. Nests were most commonly found in forested areas outside of dense urban areas. However, we did not detect significant differences in the characteristics of the nest trees located in forest preserves and city parks. Our findings are consistent with nest selection studies in rural and natural areas, suggesting that forest habitats in metropolitan landscapes can support RHWO nesting.  相似文献   

6.
Street trees are an important part of urban vegetation due to their provisioning of different types of ecosystem services such as local climate regulation and contribution to aesthetical and recreational values. In order to provide these services, urban trees need to endure many stress factors not present in natural environments, such as the widespread use of impervious surfaces in the vicinity of street trees. However, few studies have evaluated the effect of this potential stress factor on urban tree growth. The aim of this study was therefore to investigate how ground surface permeability affects stem and current-year shoot growth of linden (Tilia europaea) street trees in Gothenburg, Sweden. We found that a small fraction of permeable ground surface in the vertically projected tree crown area caused lower stem growth and strongly suppressed current-year shoot growth. This finding can guide future city planning, demonstrating that the vitality of street trees is compromised when the permeable surface area in the vicinity of the tree is small.  相似文献   

7.
This paper is a review of research in Chicago that linked analyses of vegetation structure with forest functions and values. During 1991, the regions trees removed an estimated 5575 metric tons of air pollutants, providing air cleansing worth 9.2 million. Each year they sequester an estimated 315 800 metric tons of carbon. Increasing tree cover 10% or planting about three trees per building lot saves annual heating and cooling costs by an estimated 50 to 90 per dwelling unit because of increased shade, lower summertime air temperatures, and reduced neighborhood wind speeds once the trees mature. The net present value of the services trees provide is estimated as 402 per planted tree. The present value of long-term benefits is more than twice the present value of costs.  相似文献   

8.
Urban forests adjacent to interstate corridors are understudied ecosystems across cities. Despite their small area, these forests may be strategically located to provide large ecosystem services due to their ability to act as a barrier against air pollutants and noise as well as to provide flood control. The woody vegetation composition and structure of forests adjacent to urban interstates is an important determinant of their ability to provide these services. However, these forest communities may be particularly susceptible to the introduction of exotic invasive species via the interstate and the surrounding city that can potentially alter current and future forest composition. The purpose of this study was to investigate the distribution of native and exotic woody vegetation and tree regeneration in forests along three interstate corridors in Louisville, KY, and to determine potential factors (e.g., traffic density) that are correlated with patterns in the woody vegetation community. We found the most important determinants of vegetation composition along these interstate corridors were the distance from the city center and the presence of an exotic invasive shrub, Amur honeysuckle (Lonicera maackii). Compared with forested plots within 10 km of the city center, plots further from the city center had 81% lower stem density of Amur honeysuckle, 96% higher tree seedling regeneration, and 51% greater woody plant species richness. The primarily native species composition of adult trees in forests alongside urban interstates in Louisville and the regeneration of native tree species provide optimism that these forests can maintain native species while experiencing multiple impacts from the interstate as well as from the surrounding city, emphasizing their important potential for maintaining natural forest functions across the urban landscape.  相似文献   

9.
Tree health is a critical parameter for evaluating urban ecosystem health and sustainability. Traditionally, this parameter has been derived from field surveys. We used multispectral remote sensing data and GIS techniques to determine tree health at the University of California, Davis. The study area (363 ha) contained 8,962 trees of 215 species. Tree health conditions were mapped for each physiognomic type at two scales: pixel and whole tree. At the pixel scale, each tree pixel within the tree crown was classified as either healthy or unhealthy based on vegetation index values. At the whole tree scale, raster based statistical analysis was used to calculate tree health index which is the ratio of healthy pixels to entire tree pixels within the tree crown. The tree was classified as healthy if the index was greater than 70%. Accuracy was checked against a random sample of 1,186 trees. At the whole tree level, 86% of campus trees were classified as healthy with 88% mapping accuracy. At the pixel level, 86% of the campus tree cover was classified as healthy. This tree health evaluation approach allows managers to identify the location of unhealthy trees for further diagnosis and treatment. It can be used to track the spread of disease and monitor seasonal or annual changes in tree health. Also, it provides tree health information that is fundamental to modeling and analysis of the environmental, social, and economic services produced by urban forests.  相似文献   

10.
Urban forests have garnered increasing attention as providers of an array of beneficial ecosystem services. However, urban forest ecosystems are highly complex and heterogeneous systems whose structure are shaped by interacting social and ecological processes. Approaches to reliably identify and differentiate these processes could be valuable for addressing complexity and reducing uncertainty in decision-making in urban forestry. The purpose of this study is to identify and quantify a range of social and ecological drivers of urban forest species composition, distribution, and diversity. This was done using hierarchical cluster analysis and discriminant analysis with empirical plot data describing the tree species composition in Toronto, Canada. Tree density and imperviousness were by far the most influential drivers of species composition. Increasing imperviousness saw not just reduced tree density but a decline in native species abundance. Additionally, single-detached housing, homeownership, and income were closely associated and explained higher tree densities and abundances of native species. However, income had a lower than expected influence on urban forest species composition given its importance in canopy cover research. Continuous forest patches were highly distinct compared to the remainder of the urban landscape, which highlights the ecological distinctiveness of residual forests within cities and lends support to their conservation. Increasing the understanding of social and ecological drivers of tree species composition, distribution, and diversity within cities is an integral part of urban forest ecosystem classification, which can be a valuable decision-support tool for ecosystem-based management in urban forestry.  相似文献   

11.
Invasive species have been causing important and irreversible impacts to native species and communities of ecosystems. They distort ecosystem functions by degrading forest lands, wetlands, and agricultural habitats and replace the native vegetation and reduce biodiversity, forest productivity, and suitable wildlife habitat. To address disturbances caused by invasive species occurrence, further information is needed regarding the occurrence, extent, and dispersal of invasive species and how land use may increase the spread of these species. The objective of this study was to find the frequency and dominance of three invasive species common to riparian areas of east Alabama: Ligustrum sinense (Chinese privet), Elaeagnus pungens (silverthorn), and Triadica sebifera (Chinese tallow tree). Surveys of these species in riparian forests in and around Auburn, Alabama were conducted to show the relative extent of these shrubs and their relation to urban land use. It was expected to see the highest levels of invasive species in the city center with decreasing levels radiating outward into rural areas. Another objective was how urban land use may affect the presence-absence and prevalence of these non-native plant species within study sites. The results showed that around the city center and suburban lands, cover of both Chinese privet and silverthorn tended to increase. In contrast, Chinese tallow tree density percent cover showed an opposite trend with landscapes close to city center often having slightly less cover. This study shows that urban land use may be an important association with distribution of invasive plant species.  相似文献   

12.
Urban cover mapping using digital, high-spatial resolution aerial imagery   总被引:1,自引:0,他引:1  
High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral response between classes were found. Classification confusion among objects with similar spectral responses occurred between water and dark impervious surfaces, concrete and bare-soil, and grass/herbaceous and trees/shrub. Methods of incorporating texture, band ratios, masking of water objects, sieve functions, and majority filters were evaluated for their potential to improve the classification accuracy. After combining these various techniques, overall cover accuracy for the study area was 81.75%. Highest accuracies occurred for water (100%), tree/shrub (86.2%) and impervious surfaces (82.6%); lowest accuracy were for grass/herbaceous (69.3%) and bare soil (40.0%). Methods of improving cover map accuracy are discussed.  相似文献   

13.
Two datasets of percent urban tree canopy cover were compared. The first dataset was based on a 1991 AVHRR forest density map. The second was the US Geological Survey’s National Land Cover Database (NLCD) 2001 sub-pixel tree canopy. A comparison of these two tree canopy layers was conducted in 36 census designated places of western New York State. Reference data generated by photo-interpreting the tree cover on 1994 and 2002 orthoimages were compared on a city-wide basis to estimates of the tree cover derived from the AVHRR and NLCD tree canopy maps. Comparison of the AVHRR-based estimate with the 1994 photo-interpreted reference showed low accuracy and high variability. The comparison between the NLCD-derived estimate and 2002 photo-interpreted values had higher accuracy but shows a consistent under prediction bias for all tree cover values. In comparing the two photo-interpreted reference sets, little actual change was detected for this study region. Assessing change using differences between the imagery-based AVHRR and NLCD urban tree cover datasets is shown to lead to erroneous results.  相似文献   

14.
Urban forests provide valuable ecosystem services, but their long-term viability is often threatened by low tree recruitment due to seed and/or microsite limitation. Distinguishing between these two causes of low recruitment has important management implications, but has been little studied in urban environments. We tested for seed and microsite limitation in an urban forested park in Seattle, Washington, USA by adding conifer tree seeds and seedlings to experimental plots in which we manipulated microsite conditions by removing invasive ivy (Hedera spp.) and adding deadwood. We found that natural seed production was low, and adding seeds increased the number of observed seedlings. Furthermore, adding deadwood increased seedling survival, whereas removing Hedera did not have strong effects. Seed limitation is frequently addressed through management actions such as sowing seeds and transplanting seedlings, and our results suggest that such actions address a critical barrier to tree recruitment in urban forests. However, we also observed strong microsite limitation. At our study site, microsite limitation can be addressed primarily by adding deadwood and retaining coarse woody debris on site. Addressing microsite limitation may be a critical component of successful management efforts to improve tree recruitment in urban forests, and should not be overlooked. Furthermore, our study highlights the need for active monitoring and data analysis alongside management, since the most apparent threat (widespread cover of an invasive plant in this case) may not be the primary limit on suitable microsite conditions.  相似文献   

15.
In urban and suburban ecosystems, biodiversity can depend on various non-native plant species, including crop plants, garden plants and weeds. Non-native plants may help to maintain biodiversity by providing a source of forage for pollinators in these ecosystems. However, the contribution of plants in urban and agricultural areas to ecosystem services has often been underestimated in biodiversity assessments. In this study, we investigated the pollen sources of native honeybees (Apis cerana) in an arboretum containing native trees and urban and agricultural plants in a suburban landscape. We surveyed the flowering tree species planted inside the arboretum, which were potential pollen sources. The number of potential pollen-source species of native trees peaked in June and July and decreased after August. We collected A. cerana pollen balls every month and identified plant species of pollen in the collected pollen balls using DNA barcoding. In total, we identified 29 plant species from A. cerana pollen balls. The probability of A. cerana using pollen from urban and agricultural plants was higher in July and August than in June. A. cerana collected pollen forages from native tree species (53%), but also gathered pollen from crop plants (13%), garden trees (19%) and native and non-native weeds (14%); the predominant pollen sources in September and October were the garden tree Ulmus parvifolia and the non-native weed Solidago altissima. We found that native honeybees used plants from a variety of habitats including non-native plants to compensate for apparent seasonal shortages of native tree sources in suburban ecosystems. Our results highlight the importance of assessments of both positive and negative roles of non-native plants in urbanized ecosystems to improve biodiversity conservation.  相似文献   

16.
The nocturnal, arboreal Marbled Gecko, Christinus marmoratus, is a common reptile in urban areas in southern Australia. This study compared the demographics and the distribution of geckos occupying different tree species in a modified urban park, the Adelaide Parklands, with those of a population occurring in Ferguson Conservation Park, a nearby native vegetation remnant surrounded by suburbia. The geckos in the modified urban and native remnant parks demonstrated different demographic characteristics. These differences were explained by tree circumference and the amount and type of bark cover on the tree trunk. In the Parkland, geckos were limited by the availability of thick exfoliating bark, its clearly preferred microhabitat as demonstrated by a laboratory choice experiment. The preference for trees with larger circumference, more cover, and thick bark were probably linked to thermoregulation, predator avoidance, and food resources. This study supports the premise that to support populations of urban animals, tree species selection needs careful consideration with regard to its microhabitat capabilities as well as food provision and other resource supports it can provide.  相似文献   

17.
Lv  Hailiang  Yang  Yanbo  Zhang  Dan  Du  Hongju  Zhang  Jianyu  Wang  Wenjie  He  Xingyuan 《Urban Ecosystems》2019,22(4):631-642

To maximize the ecological services of urban forests, a better understanding of the effects of urbanization on urban forest characteristics, landscape metrics, and their associations is needed for landscape-related regulations in space-limited green infrastructure of metropolitan regions. In this study, Harbin, a typical fast-growing provincial-capital city in Northeast China, is used as a case study. Based on remote sensing images, field surveys, and correlation and variation partitioning analyses, we conclude that landscape characteristics and forest attributes have large variations among different urbanization intensity (UI) regions. Forest patch density (PD), landscape shape index, woody plants species richness, and the Shannon–Wiener index (H′) increased linearly, while stem section area and tree height decreased linearly with the increasing of UIs. UI had a greater influence on tree size and forest community attributes than the forest landscape pattern. Accordingly, any landscape regulation on forest attributes should be implemented according to UIs. In addition, Euclidean nearest neighbor distance(ENN-MN), mean perimeter-area ratio (PARA-MN), fractal dimension index(FRAC-MN), and PD could probably indicate forest attributes the most, e.g., the increase of PARA-MN may be accompanied with taller trees in low and heavy UI regions, but lower woody plants species evenness in low and medium UI regions. More diversified woody plants species, and afforested areas should be advocated in a low UI region, while in a heavy UI region, the conservation of large trees should be implemented. Our results highlight that the implementation of urban forest management should vary according to different urbanization regions to maximize ecological services.

  相似文献   

18.
Ecological integrity in urban forests   总被引:1,自引:1,他引:0  
Ecological integrity has been an umbrella concept guiding ecosystem management for several decades. Though plenty of definitions of ecological integrity exist, the concept is best understood through related concepts, chiefly, ecosystem health, biodiversity, native species, stressors, resilience and self-maintenance. Discussions on how ecological integrity may be relevant to complex human-nature ecosystems, besides those set aside for conservation, are growing in number. In the case of urban forests, no significant effort has yet been made to address the holistic concept of ecological integrity for the urban forest system. Preliminary connections between goals such as increasing tree health, maintaining canopy cover, and reducing anthropogenic stressors and the general notion of integrity exist. However, other related concepts, such as increasing biodiversity, the planting of native species, and the full meaning of ecosystem health beyond merely tree health have not been addressed profoundly as contributors to urban forest integrity. Meanwhile, other concepts such as resilience to change and self-maintenance are not addressed explicitly. In this paper we reveal two camps of interpretation of ecological integrity for urban forests that in turn rely on a particular definition of the urban forest ecosystem and a set of urban forest values. Convergence and integration of these values is necessary to bring a constructive frame of interpretation of ecological integrity to guide urban forest management into the future.  相似文献   

19.
Street trees planted at tree pits with impermeable pavements are exposed to a high level of both, atmospheric and edaphic stress. For many species tree physiology, optimal growth, and consequently long-term vitality may be hampered under these harsh conditions. Therefore, maintaining the vitality and promoting the ecosystem services provided by urban trees, for example aesthetic values and microclimatic benefits, it is important to establish trees with a high tolerance to stressful urban environments. Measurements of leaf gas exchange, leaf water potential, leaf surface temperature and chlorophyll-fluorescence were used for identification of specific response of Corylus corluna L., Ginkgo biloba L., Liriodendron tulipifera L., and Tilia cordata Mill. ‘Greenspire’. The summer months in 2013 with a period of heat and drought over eight weeks only interrupted by two rainy days were appropriate to access tree’s strategies to cope with low water availability. During the measurement period, the influence of high temperatures, high values of vapor pressure deficit (VPD) and low soil water availability on stomatal conductance, water-use efficiency (WUE) and leaf water potential (Ψmin, Ψmax ) was highest for Liriodendron followed by Ginkgo. These species showed high reductions in WUE in case of higher air temperatures and high values of VPD. Results indicate an avoidance strategy under increasing heat and VPD. In contrast, Corylus and Tilia followed a tolerance strategy indicated by decreasing values of Ψmin and lower reductions of WUE. In conclusion, wide species-specific variation in response to high temperatures and high VPD indicates that substantial potential exists in the selection for dry and hot urban places.  相似文献   

20.
Urban Ecosystems - Many cities in the Eastern United States are working to increase urban tree cover due to the hydrological services that trees provide, including the interception, storage and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号