首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article introduces a new generalization of the transmuted Weibull distribution introduced by Aryal and Tsokos in 2011. We refer to the new distribution as exponentiated transmuted Weibull geometric (ETWG) distribution. The new model contains 22 lifetime distributions as special cases such as the exponentiated Weibull geometric, complementary Weibull geometric, exponentiated transmuted Weibull, exponentiated Weibull, and Weibull distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. To examine the performance of our new model in fitting several data we use two real sets of data, censored and uncensored, and then compare the fitting of the new model with some nested and nonnested models, which provides the best fit to all of the data. A simulation has been performed to assess the behavior of the maximum likelihood estimates of the parameters under the finite samples. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

2.
In this article, we propose an extension of the Maxwell distribution, so-called the extended Maxwell distribution. This extension is evolved by using the Maxwell-X family of distributions and Weibull distribution. We study its fundamental properties such as hazard rate, moments, generating functions, skewness, kurtosis, stochastic ordering, conditional moments and moment generating function, hazard rate, mean and variance of the (reversed) residual life, reliability curves, entropy, etc. In estimation viewpoint, the maximum likelihood estimation of the unknown parameters of the distribution and asymptotic confidence intervals are discussed. We also obtain expected Fisher’s information matrix as well as discuss the existence and uniqueness of the maximum likelihood estimators. The EMa distribution and other competing distributions are fitted to two real datasets and it is shown that the distribution is a good competitor to the compared distributions.  相似文献   

3.
In this paper, we propose an extension of the Gompertz-Makeham distribution. This distribution is called the transmuted Gompertz-Makeham (TGM). The new model which can handle bathtub-shaped, increasing, increasing-constant and constant hazard rate functions. This property makes TGM is useful in survival analysis. Various statistical and reliability measures of the model are obtained, including hazard rate function, moments, moment generating function (mgf), quantile function, random number generating, skewness, kurtosis, conditional moments, mean deviations, Bonferroni curve, Lorenz curve, Gini index, mean inactivity time, mean residual lifetime and stochastic ordering; we also obtain the density of the ith order statistic. Estimation of the model parameters is justified by the method of maximum likelihood. An application to real data demonstrates that the TGM distribution can provides a better fit than some other very well known distributions.  相似文献   

4.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

5.
This article introduces a new generalization of the transmuted exponentiated modified Weibull distribution introduced by Eltehiwy and Ashour in 2013, using Kumaraswamy distribution introduced by Cordeiro and de Castro in 2011. We refer to the new distribution as Kumaraswamy-transmuted exponentiated modified Weibull (Kw-TEMW) distribution. The new model contains 54 lifetime distributions as special cases such as the KumaraswamyWeibull, exponentiated modified Weibull, exponentiated Weibull, exponentiated exponential, transmuted Weibull, Rayleigh, linear failure rate, and exponential distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

6.
ABSTRACT

The binomial exponential 2 (BE2) distribution was proposed by Bakouch et al. as a distribution of a random sum of independent exponential random variables, when the sample size has a zero truncated binomial distribution. In this article, we introduce a generalization of BE2 distribution which offers a more flexible model for lifetime data than the BE2 distribution. The hazard rate function of the proposed distribution can be decreasing, increasing, decreasing–increasing–decreasing and unimodal, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties and parameters estimation of the distribution are investigated. Three different algorithms are proposed for generating random data from the new distribution. Two real data applications regarding the strength data and Proschan's air-conditioner data are used to show that the new distribution is better than the BE2 distribution and some other well-known distributions in modeling lifetime data.  相似文献   

7.
A new method has been proposed to introduce an extra parameter to a family of distributions for more flexibility. A special case has been considered in detail, namely one-parameter exponential distribution. Various properties of the proposed distribution, including explicit expressions for the moments, quantiles, mode, moment-generating function, mean residual lifetime, stochastic orders, order statistics, and expression of the entropies, are derived. The maximum likelihood estimators of unknown parameters cannot be obtained in explicit forms, and they have to be obtained by solving non linear equations only. Further, we consider an extension of the two-parameter exponential distribution also, mainly for data analysis purposes. Two datasets have been analyzed to show how the proposed models work in practice.  相似文献   

8.
In this article, the discrete analog of Weibull geometric distribution is introduced. Discrete Weibull, discrete Rayleigh, and geometric distributions are submodels of this distribution. Some basic distributional properties, hazard function, random number generation, moments, and order statistics of this new discrete distribution are studied. Estimation of the parameters are done using maximum likelihood method. The applications of the distribution is established using two datasets.  相似文献   

9.
ABSTRACT

The gamma distribution has been widely used in many research areas such as engineering and survival analysis. We present an extension of this distribution, called the Kummer beta gamma distribution, having greater flexibility to model scenarios involving skewed data. We derive analytical expressions for some mathematical quantities. The estimation of parameters is approached by the maximum likelihood method and Bayesian analysis. The likelihood ratio and formal goodness-of-fit tests are used to compare the presented distribution with some of its sub-models and non nested models. A real data set is used to illustrate the importance of the distribution.  相似文献   

10.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

11.
ABSTRACT

Adding new shape parameters to expand a model into a larger family of distributions to provide significantly skewed and heavy-tails plays a fundamental role in distribution theory. For any continuous baseline G distribution, Risti? and Balakrishnan (2012 Risti?, M.M., Balakrishnan, N. (2012). The gamma exponentiated exponential distribution. J. Stat. Comput. Simul. 82:11911206.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) proposed the gamma-generated family of distributions with an extra positive shape parameter. They presented some special models of their family but did not study its properties. This paper examines some general mathematical properties of this family which hold for any baseline model. Some distributions are studied and a number of existing results in the literature can be recovered as special cases. We estimate the model parameters by maximum likelihood and illustrate the importance of the family by means of an application to a real data set.  相似文献   

12.
In this article, a transmuted linear exponential distribution is developed that generalizes the linear exponential distribution with an additional parameter using the quadratic rank transmutation map which was studied by Shaw et al. Some statistical properties of the proposed distribution such as moments, quantiles, and the failure rate function are investigated. The maximum likelihood estimators of unknown parameters are also discussed and a real data analysis is carried out to illustrate the superiority of the proposed distribution.  相似文献   

13.
This article addresses the various properties and different methods of estimation of the unknown parameter of length and area-biased Maxwell distributions. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of length and area-biased Maxwell distributions (such as moments, moment-generating function (mgf), hazard rate function, mean residual lifetime function, residual lifetime function, reversed residual life function, conditional moments and conditional mgf, stochastic ordering, and measures of uncertainty) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimator, moments estimator, least-square and weighted least-square estimators, maximum product of spacings estimator and compare them using extensive numerical simulations. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using inverted gamma prior for the scale parameter. Furthermore, Bayes estimators and their respective posterior risks are computed and compared using Markov chain Monte Carlo (MCMC) algorithm. Also, bootstrap confidence intervals using frequentist approaches are provided to compare with Bayes credible intervals. Finally, a real dataset has been analyzed for illustrative purposes.  相似文献   

14.
In this paper, we have derived exact and explicit expressions for the ratio and inverse moments of dual generalized order statistics from Topp-Leone distribution. This result includes the single and product moments of order statistics and lower records . Further, based on n dual generalized order statistics, we have deduced the expression for Maximum likelihood estimator (MLE) and Uniformly minimum variance unbiased estimator (UMVUE) for the shape parameter of Topp-Leone distribution. Finally, based on order statistics and lower records, a simulation study is being carried out to check the efficiency of these estimators.  相似文献   

15.
In this paper, we consider the generalized exponential distribution (GED) with shape parameter α. We establish several recurrence relations satisfied by the single and the product moments for order statistics from the GED. The relationships can be written in terms of polygamma and hypergeometric functions and used in a simple recursive manner in order to compute the single and the product moments of all order statistics for all sample sizes.  相似文献   

16.
Abstract

In this paper we find the maximum likelihood estimates (MLEs) of hazard rate and mean residual life functions (MRLF) of Pareto distribution, their asymptotic non degenerate distribution, exact distribution and moments. We also discuss the uniformly minimum variance unbiased estimate (UMVUE) of hazard rate function and MRLF. Finally, two numerical examples with simulated data and real data set, are presented to illustrate the proposed estimates.  相似文献   

17.
This article introduces a five-parameter Beta-Dagum distribution from which moments, hazard and entropy, and reliability measures are then derived. These properties show the high flexibility of the said distribution. The maximum likelihood estimators of the Beta-Dagum parameters are examined and the expected Fisher information matrix provided. Next, a simulation study is carried out which shows the good performance of maximum likelihood estimators for finite samples. Finally, the usefulness of the new distribution is illustrated through real data sets.  相似文献   

18.
Let X2: n and Y2: m be the second order statistics from n independent exponential variables with hazards λ1, …, λn, and an independent exponential sample of size m with hazard change to λ, respectively. When m ? n, we obtain necessary and sufficient conditions for comparing X2: n and Y2: m in mean residual life, dispersive, hazard rate, and likelihood ratio orderings based on some inequalities between λi’s and λ. The established results show how one can compare an (n ? 1)-out-of-n system consisting of heterogeneous components with exponential lifetimes with any (m ? 1)-out-of-m system consisting of homogeneous components with exponential lifetimes.  相似文献   

19.
We introduce a new class of flexible hazard rate distributions which have constant, increasing, decreasing, and bathtub-shaped hazard function. This class of distributions obtained by compounding the power and exponential hazard rate functions, which is called the power-exponential hazard rate distribution and contains several important lifetime distributions. We obtain some distributional properties of the new family of distributions. The estimation of parameters is obtained by using the maximum likelihood and the Bayesian methods under squared error, linear-exponential, and Stein’s loss functions. Also, approximate confidence intervals and HPD credible intervals of parameters are presented. An application to real dataset is provided to show that the new hazard rate distribution has a better fit than the other existing hazard rate distributions and some four-parameter distributions. Finally , to compare the performance of proposed estimators and confidence intervals, an extensive Monte Carlo simulation study is conducted.  相似文献   

20.
ABSTRACT

In this paper, we propose two new simple estimation methods for the two-parameter gamma distribution. The first one is a modified version of the method of moments, whereas the second one makes use of some key properties of the distribution. We then derive the asymptotic distributions of these estimators. Also, bias-reduction methods are suggested to reduce the bias of these estimators. The performance of the estimators are evaluated through a Monte Carlo simulation study. The probability coverages of confidence intervals are also discussed. Finally, two examples are used to illustrate the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号